Can Regurgitation of Pancreatic Juice into the Biliary Tract be Detected by 1H MR Spectroscopy?

O. B. Ijare¹, T. Bezabeh¹, N. Albiin², A. Bergquist², U. Arnlo², M. Lohr², E. Melum¹, and I. C. Smith¹

¹National Research Council Institute for Biodiagnostics, Winnipeg, Manitoba, Canada, ²Karolinska University Hospital, Karolinska Institutet, Huddinge, Stockholm, Sweden, ³Department of Medicine, Oslo University Hospital, Oslo, Norway

INTRODUCTION: Regurgitation of pancreatic juice into the biliary tract and the subsequent mixing of pancreatic juice with bile is frequently observed in patients with pancreaticobiliary maljunction (PBM), which is a potential risk factor for the carcinogenesis of bile duct and gallbladder carcinomas [1]. The mixing of pancreatic juice with bile is generally detected by measuring the amylase activity in bile [2]. Recently, this phenomenon has also been observed in some patients without PBM [2]. In this study, we analyzed bile samples from patients with various cholestatic diseases to investigate if any of these patients show mixing of their bile with pancreatic juice.

MATERIALS AND METHODS: Bile samples were obtained from patients (n = 33) undergoing endoscopic retrograde cholangiopancreatography (ERCP) examination/surgery for various cholestatic conditions. Pancreatic juice was also obtained during ERCP examination from patients with chronic pancreatitis (n = 17). 1H MR spectra of bile and pancreatic juice were obtained with simple one-pulse and CPMG sequences (total echo-time: 480 ms) on a 360 MHz spectrometer (Bruker Instruments) using 3-(trimethylsilyl)propionic-2,2,3,3-d_4 acid sodium salt (TSP) dissolved in D$_2$O as a chemical shift reference. Neat bile and pancreatic juice samples were mixed ex vivo in the ratio 1:1, and incubated for 72 hours. 1H MR spectra were obtained at different time intervals (0, 24, 48, 72 hours).

RESULTS & DISCUSSION: Regurgitation of pancreatic juice into the biliary tract is usually detected by measuring amylase activity in bile. However, this activity is affected by experimental conditions such as pH and temperature and also by interfering molecules such as bilirubin (a bile component). We therefore tested the possibility of detecting the reflux of pancreatic juice into bile using 1H MR spectroscopy. Figure 1 depicts the 1H MR spectra (CPMG) of neat samples of human bile and pancreatic juice showing their metabolic profiles. The CPMG-1H MR spectrum of bile is characterized by the presence of lipids (taurine-conjugated to bile acids, glycine-conjugated bile acids, phosphatidylcholine and other low-molecular-weight metabolites such as lactate, acetate, acetonitrile, choline and glucuronide acid). The CPMG-1H MR spectrum of pancreatic juice shows the presence of lactate, alanine, acetate, acetonitrile, glutamate, glutamine, choline, glycine, formate and the aromatic amino acids-tyrosine, histidine and phenylalanine.

The disappearance of PC in bile samples mixed with pancreatic juice could be attributed to the hydrolysis of PC by pancreatic enzymes (such as pancreatic lipase). Since PC is an important component of bile protecting hepatocytes and biliary epithelium from harmful effects of various bile acids, its absence could be cytotoxic to both hepatocytes and cholangiocytes. In patients with cholestatic diseases such as primary sclerosing cholangitis, the absence of PC in the bile has also been considered as a risk factor for the progression towards bile duct cancer (cholangiocarcinoma) [3]. Moreover, 3 out of the 5 patients who showed this phenomenon also showed elevated levels of plasma-bilirubin indicating underlying cholestasis. All these observations support the hypothesis that reflux of pancreatic juice into the biliary tract or gallbladder could be a potential risk factor for the development of cholestatic conditions and ultimate progression towards malignant transformations as observed in patients with PBM. These results show that pancreaticobiliary reflux can be reliably detected by 1H MR spectroscopy.

CONCLUSION: Reflux of pancreatic juice into the biliary tract/gall bladder can easily be detected by 1H MR spectroscopy of bile, and this method may prove to be an alternative to the measurement of amylase activity in the rapid detection of pancreaticobiliary reflux. Recently, the feasibility of in vivo spectroscopy of bile has been demonstrated and using such an approach it should be possible to detect the reflux of pancreatic juice into the gallbladder non-invasively.

REFERENCES: