Evaluation of Nonalcoholic Liver Disease using 23Na MRI and Shift Reagent-aided 23Na and 31P MRS

P. N. Hopewell1,2, and N. Bansal1,2

1Radiology, Indiana University School of Medicine, Indianapolis, IN, United States, 2Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States

Introduction
The ability to noninvasively detect diffuse chronic liver diseases, especially nonalcoholic fatty liver disease (NAFLD), is greatly needed since currently the gold standard for diagnosis is biopsy. One possible imaging modality that takes advantage of an altered transmembrane Na$^+$ gradient in diseased tissue is 23Na MR. The current study uses single quantum (SQ) and triple quantum-filtered (TQF) 23Na MR techniques to show variations in the observed signal intensity (SI) that correlates with disease progression. To quantify these changes observed with 23Na MRI, shift reagent (SR) and 23Na and 31P MRS techniques were employed to determine the relative intra- and extracellular spaces (rICS and rECS, respectively) and intra- and extracellular Na$^+$ concentrations ([Na$^+$]i and [Na$^+$]e, respectively). To determine whether the TQF SI came from the intracellular space or whether increased extracellular matrix (ECM) proteins contributed to the signal, TQF SR experiments with 23Na and T$_2$ assessment were conducted before and after SR infusion.

Methods
Wistar rats (~250 g) were placed on methionine- and choline-deficient diet (MCDD), after baseline SQ and MQF 23Na MRI. Additional data were collected at 2, 5, and either 10 or 15 weeks after initiating MCDD treatment. MR data were acquired with a Varian 9.4 Tesla horizontal bore system. 3D SQ transaxial 23Na MRI were obtained with a home-built loop-gap resonator tuned to 106 MHz. The 23Na SI MRI were collected using a gradient-echo (GE) imaging sequence and following imaging parameters: TR = 50 ms, TE = 4.5 ms and 10 min total imaging time. TQF 23Na MRI employed the same parameters as used for SQ 23Na MRI except TR = 100 ms and 50 min total imaging time. Rats were surgically prepared for infusion of TmDOTP through the external jugular vein. A 2 cm diameter surface coil tunable to 106 MHz for 23Na and 163 MHz 31P spectra was placed over the exposed liver with proper placement being confirmed by minimal if any observable phosphocreatine peak in the 31P ATP spectra. 23Na MRS were collected with a simple one-pulse sequence. 23Na T$_1$ was measured using a pulse-burst saturation recovery pulse sequence consisting of 10 saturation pulses followed by an incremental delay (16 values ranging from 0.05 to 200 milliseconds), a 90° observed pulse and acquisition with Cyclops phase cycling. 23Na T$_2$ and T$_2$ were measured using a Hahn SE sequence consisting of a composite 180° pulse. The TE was varied from 0.06 to 40 milliseconds. The instrument dead time of 10 microseconds was included as a part of the TE. The relaxation times were computed by fitting a plot 23Na resonance area versus TR or TE to a mono-exponential function for T$_1$ and a bi-exponential function for T$_2$. The TQF 23Na MRS sequence employed a MQ preparation time (τ) and evolution time (τ) of 3 µs in order to maximize the SI [1]. Due to the dependence of the TQF signal on T$_2$ and T$_2$, a second TQF experiment was performed by varying τ from 0.06 to 40 milliseconds. Histologic samples were fixed in formalin and stained with H&E and trichrome stains.

Results
SQ and TQF 23Na MRI SI decreased to a minimum at week 5 (0.33±0.01 and 0.11±0.01, respectively) and then peaked at week 15 (0.44±0.04 and 0.18±0.01, respectively) becoming significant to baseline. These data negatively correlate with the lipid content observed with 1H MRS (data not shown). For the SR experiments, an increase in [Na$^+$]i was observed at week 15 (58.6±3.34) compared to baseline (28.9±8.6). No change was observed between intra- and extracellular T$_1$ measurements. T$_2$, did not vary between timepoints, however, T$_2$ did increase slightly (~50%) at week 15 compared to baseline. Although the [Na$^+$]i did increase, the TQF 23Na MRS data showed that a large component of the TQF signal arose from the extracellular space. Therefore, the increase in TQF 23Na MRI SI is due to not only increased [Na$^+$]i, but also a large increase in the macromolecules associated with fibrosis development. No variations were observed in pH, [Mg$^{2+}$], or β-ATP/Pi between timepoints. Histological data correlated with the data (i.e., increasing fibrosis with time and cirrhosis development at week 15).

Conclusion
SQ and TQF 23Na techniques are sensitive to cellular and tissue damage caused by diffuse liver diseases, prompting their further development and clinical translation. TQF 23Na MRI may be more useful in detecting the severity and progression of liver damage than SQ 23Na MRI since it depends on [Na$^+$]i and the accumulation of ECM macromolecules [2].