R2* as a Surrogate Measure of Ferriscan® Iron Quantification in Thalassemia

W. C. Chan1, F. Budhani1, Z. Tejani1, C. Massey2, and M. A. Haider1

1Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada, 2Dalla Lana School of Public Health, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON, Canada

Background:
Accurate monitoring of liver iron concentration is an important clinical concern in patients with thalassemia [1]. Ferriscan® is an FDA approved, commercially available service for the non-invasive measurement of liver iron ([Fe]) using MRI [2]. R2* measurement sequences are readily available on most commercial scanners, and prior studies have demonstrated a correlation between R2* and liver biopsy based iron measurements [3, 4]. However, it is not easy to translate this result to different vendor platforms; this is part of the value of the Ferriscan® service. If R2* measurements were highly correlated with Ferriscan® iron measurements, it would be possible to reduce costs by developing a calibration curve between R2* measurements from a given scanner and Ferriscan® results. Once this is done, assuming FDA approval is not required for the given application, iron measurements can be derived without the need to send all cases for Ferriscan® analysis, thus reducing costs. The aim of this study is to determine the accuracy of using R2* values in measuring liver iron concentration by demonstrating a correlation between R2* relaxation rates and Ferriscan® determined liver iron concentration.

Materials and Methods:
Eighty-eight patients with thalassemia major were retrospectively evaluated in the study. Imaging was performed using a 1.5 Tesla system (Siemens Avanto, Erlangen, Germany) using the Body Coil. R2* data maps were generated from a multiecho gradient echo sequence (Figure 1) using a monoexponential decay model (TR=2500 ms and TE echo times of 6, 9, 12, 15, and 18 ms). A noise floor was determined by measuring the mean signal in air. Three elliptical regions of interest (2 in the right lobe and 1 in the left) were selected in each patient, encompassing as much liver parenchyma as possible while excluding vessels and biliary tree. The results were then averaged to obtain R2* data. R2 data was obtained as previously described according to the Ferriscan® protocol [2]. These results were analyzed by Ferriscan® and the resultant liver iron concentrations were correlated with the R2* data, with the assumption of a linear relationship between R2* and liver iron concentration. R2* values of paraspinal muscles were also determined for each patient to serve as internal controls.

Results:
The mean age was 35.7 ± 2.1 yrs and gender distribution was equal with 44 males and 44 females. Hepatic R2* values ranged from 57.5 to 1032.5 1/s with a mean of 334.7 ± 249.6 1/s. Ferriscan® determined liver iron concentrations ranged from 17 to 769 mmol/kg with a mean of 224.9 ± 207.3 mmol/kg. Mean R2* value for paraspinal muscle was 55.2 ± 12.9 1/s. There was a very strong linear correlation between our R2* values and Ferriscan® determined liver iron concentration with the estimated Spearman correlation being 0.976 (95% CI: 0.963, 0.984). The prediction equation from regression analysis was (liver iron concentration) = 0.80(R2*) – 44.1 (r=0.968, r2=0.937, 95% CI: 0.911, 0.951, p<0.0001) (Figure 2). Simulated models based on our data predicted that a minimum of 21 measurements would be needed on other MRI scanners in order to calibrate R2* values with Ferriscan® results (r2 confidence interval width=0.15, probability > 0.80).

Conclusion:
Determination of liver iron concentration by R2* methods may be helpful as a diagnostic surrogate for Ferriscan® iron measurements and could help save costs. In addition, Ferriscan® may be a valuable tool for interscanner and intervendor calibration of R2* measurement. Further prospective validating studies using our model are needed.

Fig 1. Representative R2* maps with mean R2* values of (a) 195.5 ± 8.1 1/s for a liver [Fe] of 94 mmol/kg (as determined by Ferriscan®) and (b) 780.5 ± 20.6 1/s for a liver [Fe] of 700 mmol/kg. R2* value scales are provided (units=1/s).

Fig 2. Scattergram showing linear correlation between liver R2* values and Ferriscan® liver [Fe] (r=0.97, r2 = 0.94, p<0.0001, n=88). Dashed lines represent 95% prediction limits.

References: