Altered resting state functional connectivity in a subthalamic nucleus - motor cortex - cerebellar network in Parkinson’s Disease

S. Baudrexel1, T. Witte1, C. Seifried1, F. von Wegner1, J. C. Klein2, H. Steinmetz1, R. Deichmann2, and R. Hilker3

1Department of Neurology, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany, Germany, 2Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany

Introduction Parkinson’s disease (PD) is characterized by a loss of dopaminergic projections from the substantia nigra to the basal ganglia, resulting in altered metabolic and electrophysiological functional connectivity (FC) of large scale motor, cognitive and limbic networks [1,2]. Using PET, increased metabolic activity is typically found in the basal ganglia, primary motor cortex and cerebellum, whereas metabolic decreases are usually found in premotor, frontal and parietal areas [1]. However, multiple cell recordings from the human subthalamic nucleus (STN), generally considered as a key player in PD-pathophysiology, and electrophysiological studies from other species suggest that it is not necessarily the mean firing rate but, above all, the temporal pattern of neurologic activity that is altered in PD [3]. Specifically, an increased STN-oscillatory activity in the EEG beta-frequency band and in the cortical EEG is characteristically found in PD-patients and probably relates to PD-motor symptoms [4,5]. Here we investigate, whether an altered STN-FC pattern may also be observed non-invasively in PD on the basis of very low frequency BOLD fluctuations, using resting state fMRI and a common seed-voxel approach.

Methods 31 patients with early PD (H&Y stage I and II, mean age 59.4 +/-10.7 y) and 43 age matched healthy controls underwent resting state fMRI using a gradient echo EPI sequence on a 3 T Siemens Trio system with the following parameters: TR = 3s, TE = 30 ms, matrix size = 64x64, FoV = 192x192 mm2, 45 slices, slice thickness 2 mm, scan duration 13 min. PD patients were scanned 12 h after cessation of all antiparkinsonian medication. After discarding the first 9 scans, 251 data points were left for subsequent FC-analysis. In addition to the functional scans, high resolution quantitative T1-maps were acquired using an RF-spoiled gradient echo sequence as described in [6]. Data analysis was performed with SPM8 and custom built programs, consisting of the following steps: 1. Spatial realignment 2. Physiological noise regression on the basis of the acquired cardiac and respiratory signal (modified according to RETROICOR [7]). 3. Coregistration of functional data sets onto the individual high resolution T1-map. 4. Normalization to MNI-space with spatial resampling to 2x2x2 mm3 resolution. 5. Smoothing by convolution with a 5 mm isotropic Gaussian kernel. 6. Nuisance regression, using 6 movement parameters (and their first derivatives) obtained from spatial realignment and the mean white matter and CSF signal. 7. Temporal band pass filtering with cut off frequencies 0.008<f<0.01 Hz. 8. Seed-region specification and FC-analysis: The STN was delineated manually on the basis of the mean EPI-image over all subjects. For each individual, the mean STN time-series was calculated and correlated with the time series of all other brain voxels. After Fisher’s r-to-z transformation, a second-level random effects analysis was performed using SPM8.

Results Thresholded t-maps (p < 0.005, uncorrected) for the group statistic FC_{STN left} (PD) > FC_{STN left} (Control) are displayed in Fig. 1. Data reveal a huge cluster of 1403 voxels of increased subthalamic FC to the bilateral primary and supplementary motor cortex (p < 0.001, corrected for multiple comparisons at cluster level, peak level T = 4.73 at MNI -38,-36,58 (right hand areal)). A similar pattern was observed for the right STN. Contrarily, the opposite contrast FC_{STN right} (PD) < FC_{STN right} (Control) did not reveal significant results, neither for the left nor the right STN. In a consecutive analysis, a spherical ROI of 5 mm radius centred around the peak coordinates in Fig.1 was used as seed-region to investigate changes in FC of the primary motor cortex. The results for the contrast FC_{motor cortex left} (PD) > FC_{motor cortex left} (Controls) are depicted in Fig. 2. The most significantly increased FC-values were found bilaterally in the cerebellum (cluster size 6810, p < 0.001, cluster level corrected, peak level T = 5.86 at MNI 6,-74,-22 (right cerebellum)) and, in addition to the left STN, bilaterally in frontal areas. Significant FC-reductions were found in the contralateral motor cortex and bilaterally in BA 37 (data not shown).

Discussion Using resting state FC fMRI we provide evidence of wide-spread alterations in network coupling related to PD. Most strikingly, we found increased FC values within a large subthalamic-motor cortex-cerebellar network, which, speculatively, may partly result from pathological oscillatory activity aliased from higher frequency bands (e.g. from the beta-band). However, the physiological relevance and the exact electrophysiological origin of this finding remain further to be determined.

References