Investigating the Relationships Between T1 and T2 Relaxation Times and Myelin Water Fraction During Neurodevelopment

S.C. Deoni1, E. Mercure2,3, A. Blasi2,3, D. Gasston2, M. Johnson3, S.C. Williams2, and D.G. Murphy4

1Centre for Neuroimaging Sciences, Institute of Psychiatry, London, United Kingdom, 2Centre for Neuroimaging Sciences, Institute of Psychiatry, London, England, United Kingdom, 3Centre for Brain and Cognitive Development, Birkbeck University, London, England, United Kingdom, 4Department of Psychological Medicine, Institute of Psychiatry, London, England, United Kingdom

INTRODUCTION: Human neurodevelopment is punctuated by several essential processes, amongst them are dendritic growth; synapse generation and subsequent pruning; and myelination. The establishment of the lipid myelin layer surrounding neuronal axons is necessary for the efficient and coordinated flow of information across the complex integrated neural systems responsible for cognitive, emotional and behavioural functioning. Given the crucial role myelin plays, and the emerging hypothesis that abnormal or aberrant myelination contributes to the etiology of several neurological and psychiatric disorders (i.e. autism), investigation of the spatio-temporal dynamics of myelination is necessary. To this end, several magnetic resonance imaging techniques have been used to provide information related to myelin. For example, the gradual onset of ‘adult-appearing’ grey / white matter contrast in T1, and T2-weighted images broadly follows the the established myelination time-course derived from serial post-mortem histological studies. However, T1 and T2-weighted images are qualitative, limiting objective comparisons between subject groups. Diffusion-weighted imaging (and, by extension, diffusion tensor imaging, DTI) is sensitive to fibre architecture, coherence, and density. DTI-derived metrics, including fractional anisotropy (FA), mean and radial diffusivity (MD and RD), provide complementary indices of neuronal maturation, however, as significant FA and RD are noted in non-myelinated nerve [1,2], these metrics are not myelin-specific. Quantitative T1 and T2 evaluation is also cited as a surrogate measure of myelin [3,4], as T1 and T2 decreases during neurodevelopment are believed to reflect the increased presence of myelin precursory proteins and macromolecules, development of the myelin bilayer, and loss of free water. While not myelin-specific, the relationships between T1 and T2 and myelin content, and therefore their surrogate suitability, remains unknown. In this work, we investigated these relationships through comparison of T1 and T2 with myelin content, quantified through evaluation of the myelin water fraction (MWF) derived using multi-component Driven Equilibrium Single Pulse Observation of T1 and T2 (mcDESPOT) [5].

METHODS: Quantitative DESPOT [6] T1 and T2, and mcDESPOT MWF data were acquired of 9 healthy infants (4 female) between 3 and 8 months of age during non-sedated natural sleep. Acquisition parameters were: SPGR: TE/TR = 4.1/11.2ms, f = {3,4,5,6,7,9,11,14}°, BW = 93Hz/voxel; SSFP: TE/TR = 5.6/11.2ms, f = {14,20,25,30,37,46,58,80}°, BW = 244Hz/voxel. SSFP data were acquired with phase-cycling increments of 0 and 180° to allow correction for off-resonance effects [7]. Scan time was minimized through partial k-space acquisition (NEX=0.5) and parallel imaging (G factor = 1.5). Total acquisition time was 10 minutes on a GE Signa 1.5T clinical scanner with an 8-channel head RF coil. Following acquisition, each infant's data were linearly co-registered and non-brain signal removed. Voxel-wise T1 estimates were derived from the SPGR data; T2 from the SSFP data; and MWF from both as detailed in [5,6]. All infant data was then non-linearly co-registered and developmental trajectories (T1, T2 or MWF vs. age) were calculated for the genu, body and splenium of the corpus callosum; internal capsule; frontal, temporal, parietal, and occipital lobe white matter. Correlations between T1 and T2, T1 and MWF; and T2 and MWF were then investigated over these regions to determine the relationships between them.

RESULTS: A comparison of coronal T1, T2 and MWF maps through each of the infants over the age range is shown in Fig. 1. As noted in previous studies, T1 and T2, particularly within the major white matter pathways, decrease dramatically over the first 8 months of life. The data also reveal the dynamic increase in myelin as the white matter pathways become established. Corrected for multiple comparisons, statistically significant (p<0.05) correlations were found between T1 and T2 in bilateral frontal WM, left genu and right splenium of the corpus callosum; between T2 and MWF in the right splenium of the corpus callosum; and between T1 and MWF in bilateral frontal occipital and cerebellar WM, left temporal WM, and genu and splenium of the corpus callosum.

DISCUSSION / CONCLUSIONS: Visualization and quantitative evaluation of white matter maturation and myelination has tremendous research and clinical applicability. While MRI has provided a non-invasive window into the process of neurodevelopment, quantitative analysis of specific development processes have been difficult given the dearth of appropriate and specific imaging techniques. In this work, we investigated the relationships between relaxation times and myelin water fraction. In general we found that T1 was generally well correlated to MWF, likely owing to the strong influence of lipids, proteins and macromolecules (the very substrates of myelin) on T1. In contrast, T2 was poorly correlated with MWF, likely due to the greater dependence of T2 on free water content and paramagnetic atoms (not greatly affected during early myelination). Thus, contrary to existing reports [4], changes in T2 should not be immediately interpreted as variations in myelin content. In general, however, quantitative evaluation of MWF, through mcDESPOT or other technique, is preferable to surrogate markers.