Preferential patterns of myocardial iron deposition by multislice multiecho T2* CMR in thalassemia major patients.

A. Meloni1, V. Positano1, A. Pepe1, P. Pepe1, M. C. Dell’Amico1, C. Salvatori1, P. Keilberg1, G. Valeri1, E. Cracolici1, P. Bitti4, A. Zuccarelli5, M. F. Santarelli1, and M. Lombardi1

1MRI Lab, “G. Monasterio Foundation” and Institute of Clinical Physiology, CNR, Pisa, Italy, 2Azienda Ospedaliero-Universitaria Ospedali Riuniti "Umberto I-Lancisi-Salesi", Ancona, Italy, 3Policlinico "Paolo Giaccone", Palermo, Italy, 4Dipartimento dei Servizi - P. O. San Francesco, Nuoro, Italy, 5Centro trasfusionale e di microcitemia - Ospedale civile, Olbia, Italy

Introduction: T2* multislice multiecho cardiac magnetic resonance (CMR) technique has permitted quantification of myocardial iron overload (MIO) by a segmental approach [1]. Little is known in the literature about patterns of iron store in hemochromatosis. Our study aimed to investigate myocardial iron overload in thalassemia major (TM) patients by segmental T2* CMR technique, in order to determine if there were preferential patterns of iron deposit.

Materials and methods: Five hundred and nineteen TM patients underwent CMR. Three parallel short-axis views (basal, medium, and apical) of the left ventricle were obtained by a T2* gradient–echo multiecho sequence. The images were analyzed using a previously validated, custom-written software (HIPPO-MIOT IFC-CNRS®) [2]. The myocardium was automatically segmented into a 16-segment standardized LV model [3] and the T2* value on each segment was calculated. The global T2* value averaged over all 16 segmental T2* values, as well as the mean values over the basal, middle, and apical slices were automatically provided. The T2* value in the mid-ventricular septum was evaluated by averaging the T2* values in segments 8 and 9. Four different main circumferential regions were defined by averaging the corresponding segmental T2* values: anterior (segments 1,7,13), septal (segments 2,3,8,9,14), inferior (segments 4,10,15) and lateral (segments 5,6,11,12,16).

Results: Two-hundred and twenty-nine patients showed global T2* value < 26 ms, corresponding to significant global heart iron overload [4]. The analysis was focused on this patient population, subsequently divided into two groups: severe iron overload (N = 83, global T2* < 10 ms) and mild-moderate iron overload (N =146, global T2* between 10 and 26 ms). For each group, segments were sorted by mean T2* value. Segment order was significantly preserved between the two groups (r = 0.91, P < 0.0001). Significant circumferential variability was found in patients with overall heart iron overload (figure 1A) as well as in both groups (P<0.0001). The mean T2* value over the anterior region was significantly lower than the mean T2* values over the other regions and the mean T2* over the inferior region was significantly lower than the T2* values over the septal and lateral regions (figure 1B). This pattern was preserved within each single slice (figure 1C). We found a significantly higher T2* value in the basal slice versus the medium and apical slices in patients with severe iron overload.

Discussion and Conclusions: A preferential pattern of iron store in anterior and inferior regions appears to be present in TM patients with severe and mild-moderate iron overload. The preserved pattern between the groups prevents attributing this datum to additive susceptibility artefacts, which are negligible in heavily iron-loaded patients. A segmental T2* CMR approach could identify early iron deposit, useful for tailoring chelation therapy and preventing myocardial dysfunction in the clinical setting.


Figure 1: CMR results in the patients with the global heart T2* value < 26 ms. Segmental T2* variability (A). Circumferential T2* variability (B). Mean circumferential T2* values in each slice (C).