Internal gradient evaluation in spongy bone heel as a potential marker for osteoporosis disease

M. Rebuzzi1,2, F. Fasano3, V. Vinicola4, G. Hagberg5, M. Di Mario6, B. Maraviglia7,8, and S. Capuani9,10

1Physics, Sapienza University of Rome, Rome, Rome, Italy, 2CNR-INFM SOFT, Rome, Rome, Italy, 3IRCCS Santa Lucia Foundation, Rome, Rome, Italy, 4Rehabilitation Hospital, IRCCS Santa Lucia Foundation, Rome, Rome, Italy, 5Neuroimaging laboratory, IRCCS Santa Lucia Foundation, Rome, Rome, Italy, 6Radiology, IRCCS Santa Lucia Foundation, Rome, Rome, Italy, 7MARBILAB, Enrico Fermi Center, Rome, Rome, Italy, 8Physics, CNR-INFM SOFT, Rome, Rome, Italy

Introduction
In osteoporotic spongy bone, the trabecular bone microarchitecture is rearranged or disrupted and bone marrow quality is altered. Up to date T2* is the most used MR parameter to evaluate the spongy bone status [1]. In fact, T2* probes the micro-structure of the trabecular bone because it is sensitive to the microscopic field inhomogeneities caused by the magnetic susceptibility differences between the solid bone structure and the liquid bone marrow. In this study we propose an alternative way of evaluating the influence of the susceptibility differences in the spongy bone. It is based on the evaluation of the internal gradient Gi extracted from Spin-echo decay as usually performed in porus systems investigations [2]. However, the value of Gi is not only affected by magnetic susceptibility differences linked to trabecular bone density, but also by fat and water diffusion in bone marrow. Recent reports showed the ability of MRI to detect, from the calcanei of postmenopausal women, the presence of peripheral osteoporosis. Aim of this work was to assess, in vivo, the potential ability of Gi to describe the spongy bone status when applied to postmenopausal women, and to identify the most promising heel locations to assess the presence of osteoporosis. As a consequence, in the same subject, ADC and Gi were measured from the whole calcaneus, the whole talus. Three different regions of the calcaneus were considered: the subtalar (ST) the tuber (TC) and the cavum calcanei (CC) and the talus region of talus (Fig. 1). ADC and Gi were correlated with the correspondent bone-mineral-density (BMD) obtained by lumbar QCT from each volunteer.

Methods and Materials
Briefly, when a spin-echo sequence is used to study a tissue characterized by strong internal gradients (Gi), the echo signal decays is described by:

\[S(TE) \propto \exp\left(-TE/T_{2e}^\gamma - (yG) \cdot D \cdot TE^3/12 \right) \]

which takes into account the spin diffusion between the two pulses in regions of different effective magnetic field [2,3]. By taking in consideration this contribution, it is possible to quantify Gi with a simple fitting procedure. The internal gradient was obtained from the Levengerg-Marquardt fit of the signal generated from spongy bone marrow.

Sixty women (twenty-five with osteoporosis, twenty-five with osteopenia, and ten healthy controls) were enrolled for the present study, and imaged using a 3.0T MR scanner. GE at 3. TEs (from 4ms to 25ms), SE sequence at different TEs (from 12ms to 100ms) and Diffusion-Weighted images (DWI) using phase diffusion gradients ("b values" 0-8000 s/mm2) were collected from the calcanei of each recruited subject. GE, DWI and SE were used to derive T2*, ADC and Gi values respectively. Statistical group comparisons were performed using Pearson’s correlation coefficient. Correlations between T2*, Gi, ADC and BMD, were investigated. A Multivariate linear regression was performed to establish the most sensitive MR parameter and the best location to detect osteoporosis disease.

Results: T2* values did not discriminate between osteopenic and osteoporotic women in TC. Conversely, they were significantly different, in all other locations between the three groups (p<0.05). ADC values from ST region allowed a better discrimination (p<0.005) between healthy and osteoporotic subjects than those obtained from the whole calcaneus (p<0.01) and T region (p<0.05). However, ADC measured in CC region and in the whole talus did not discriminate between healthy and osteoporotic subjects. Gi measured in the ST location was the most sensitive (p<0.0005) parameter to discriminate between healthy and osteoporotic subjects. The same parameter measured from the whole talus (p<0.025) and calcaneus (p<0.05), and from the ST region (p<0.01) was the most sensitive to discriminate between osteopenic and osteoporotic women. A linear correlation was found between Gi and BMD in ST location (Fig. 2) and whole talus of healthy subjects only. Our results match with relaxation times results obtained by other authors which indicate changes in the ST region as particularly sensitive in discriminating between healthy and osteoporotic individuals [4,5].

Conclusion: Our preliminary data confirm the ST as the most sensitive region to detect osteoporosis, and Gi as the most sensitive parameter for an early diagnosis of osteoporosis. If confirmed on larger populations, these finding might prompt MR protocols for application in clinical routine.

References