A new approach to mouse brain mapping

M. D. Keller1,2, C. Watson3, K. Richards4, R. Buckley5, N. Kurniawan5, R. Beare5, J. Vukovic5, D. Wang1, S. Yang1, P. Zhao5, N. Faggian1, G. Paxinos6, S. Petrov1, G. Egan1, P. Bartlett1, G. Galloway1, and D. Reutens1

1Centre for Magnetic Resonance, University of Queensland, Brisbane, Qld, Australia, 2Queensland Brain Institute, University of Queensland, Brisbane, Qld, Australia, 3Curtin University, Perth, WA, Australia, 4Florey Neuroscience Institutes, Melbourne, Vic, Australia, 5Monash University, Melbourne, Vic, Australia, 6Prince of Wales Medical Research Institute, Sydney, NSW, Australia, 7Centre for Advanced Imaging, University of Queensland, Brisbane, Qld, Australia

Background:
Two dimensional paper based brain atlases provide detailed information of the cytoarchitecture of the brain’s sub regions. The benefits of using digital, annotated MR-based atlases are immense. Unlike a paper-based atlas, images and its labels in 3D digital atlases allow manipulation, rotation and sectioning in any direction. In previous MR-based mouse brain atlases the brain’s sub regions are amalgamated. The emergence of mutant mouse models makes it more important to define rules for digital 3D mouse brain segmentation in order to find minute volumetric and structural differences to normal models (Ma et al., 2005), as those changes could be analogous to a variety of human disorders that are associated with structural changes.

Aims: The aim of the presented work is to focus on the complex cerebellar and hippocampal neuroanatomy and provide definitions for the delineations and boundaries of these anatomical structures in three dimensional MRI space.

Materials and Methods: The formalin fixed brain of a twelve-week old male inbred C57BL/6J mouse was imaged in a wide bore 700MHz wide bore Bruker microimaging system at 30 μm isotropic resolution. A T2*-weighted 3D-Flash sequence, (TR/TE = 50ms/12ms) was used. The coil was a 15mm custom-built SAW design (M2MImaging, Australia). To achieve a higher resolution 3D-image for segmentation the brain was scanned multiple times (three 8-average scans and seven 4-average scans). These scans were then non-linearly registered, upsampled with linear interpolation and the resulting images then averaged together (Walters et al., 2003). Segmentation was performed using Display (MINC suite, Montreal Neurological Institute, Canada).

Results:
For the cerebellum 45 closed border labels were defined, which included grey and white matter regions, fissures and deep cerebellar nuclei. The hippocampus contained 35 different regions, which included the layers of the cornu ammonis and dentate gyrus. Guidelines were established using the knowledge base from previously mentioned publications, as well as the experience gained from our segmentation. These hierarchical rules mention the best practice first, followed by geometrical based approximation to the best practice.

1.) If natural boundaries were visible, they were chosen for segmentation (Figure 2), e.g. the fissures are the natural border of the lobules.

2.) If no borders were visible, neighbouring structures were chosen as reference points and the distances to those structures were calculated. This way, for the first time, rules for delineation of the cerebellar vermis in the mouse brain could be established.

Discussion:
While the atlasing project is in the early stages, there are already more regions described than in other anatomical 3D MRI mouse brain atlases. In most anatomical detailed mouse brain atlases, the labels are placed in the appropriate region, but the exact border of e.g. the vermis of the cerebellum remains undefined. Therefore this atlas is more accurate then paper based atlases, as we defined closed border labels. The use of a single specimen to create a brain atlas has some limitations. Individual variation of the size and shape of particular structures cannot be completely accounted for. However, a comprehensive analysis of a single brain can provide the first step to the identification of brain structures in the mouse population (Schmahmann et al., 1999). Furthermore, this atlas will provide the basis for the development of a probabilistic mouse brain atlas in the future.

Discussion: