Comparison of tracer kinetic models with DCE-MRI to evaluate a phase 1 anti-angiogenic trial

C. H. Thng¹, T. S. Koh², S. Hartono¹, B. C. Tai³, P. S. Lee¹, H. Rumpel⁴, A. B. Ong⁴, N. Sukri⁵, C-I. Wong⁵, R. Soo⁵, A. S. Low⁴, R. Humerickhouse⁶, and B. C. Goh⁷

¹National Cancer Centre Singapore, Singapore, Singapore, Singapore, ²Nanyang Technological University, Singapore, Singapore, Singapore, ³National University of Singapore, Singapore, ⁴Singapore General Hospital, Singapore, ⁵National University Hospital, Singapore, ⁶Abbott Laboratories, United States

Introduction
Dynamic contrast enhanced MRI (DCE-MRI) with tracer kinetic modeling has been proposed as a biomarker of angiogenesis imaging. Three tracer kinetic models were studied as methods of angiogenesis assessment: conventional compartmental (CC) model developed by Brix et al. (1), adiabatic approach to tissue homogeneity (ATH) model developed by St. Lawrence and Lee (2), and distributed parameter (DP) model developed by Koh et al. (3) All models enable derivation of tissue microcirculatory parameters such as blood flow and capillary permeability-surface area product (PS). We aim to examine the association between the above parameters with drug exposure and patient outcome in a Phase I anti-angiogenic trial.

Materials and methods
Patient
Twenty-eight evaluable patients from a completed phase I trial (ABT-869) with 3 dose escalations formed the study population. The pharmacokinetic study was performed on Day I. Area under the concentration time curve extrapolated to infinity (AUC_{inf}) was used as an indicator of drug exposure. Patients demonstrating progressive disease in first 2 evaluation scans (cycle 2 or 4) based on RECIST criteria were considered progressors and all other patients non-progressors.

DCE-MRI
MRI was performed on a 1.5 Tesla scanner (Avanto, Siemens, Erlangen) using integrated surface coils (TIM, Siemens, Erlangen). A three-dimensional, fast low-angle shot (3D FLASH) sequence was used to acquire sequential images with the following parameters: repetition time TR=3.15 ms, echo time TE=1 ms, field of view (FOV) 40cm×40cm, 256×256 matrix, 10 slices with slice thickness 8mm, and temporal resolution 4 sec. To estimate native (pre-contrast) tissue $T_1$ values using the dual-flip angle method, 5 sets of pre-contrast images were acquired with the above parameters for each of two flip angles, $a=6^\circ$ and $18^\circ$. This is followed by a dynamic sequence which includes 90 consecutive sets of images acquired with the above parameters and a flip angle $a=18^\circ$. Intravenous Gd-DTPA (Magnevist®, Bayer Schering Pharma, Berlin, Germany) at 0.2mmol/kg was injected after the 10th set of dynamic images at 3 ml/sec followed by a 20 ml saline flush at the same rate.

Data processing & statistical analysis
Post-processing was performed off-line on a Pentium IV personal computer with Matlab (MathWorks, Natick, MA). Region-of-interests (ROIs) consisting of the tumor were manually identified. ROI over aorta was used as arterial input function. Percentage change in PS derived from each model (DP_{PS}, ATH_{PS}, and CC_{PS}) from baseline in Days 3 and 15 were compared with the patient response. Receiver operating characteristic (ROC) curve analysis was performed using SPSS 15.0 (SPSS Inc., Chicago, IL). Correlation with C_{max} and AUC_{inf} was done using Medcalc (Medcalc Software, Mariakerke, Belgium).

Results
Correlation with drug exposure (AUC_{inf})
Significant inverse correlation was observed between ABT-869 AUC_{inf} and DP_{PS} as well as CC_{PS} on day 3 ($r=-0.564$, $p=0.015$; $r=-0.716$, $p<0.001$) and day 15 ($r=-0.570$, p=0.006; $r=-0.444$, p = 0.038). There is no correlation between ATH_{PS} with AUC_{inf} both in day 3 and day 15. The scatter diagram for each model PS in day 15 as plotted against AUC_{inf} is shown in Figure 1.

ROC analysis for predicting progression and at Day 15
Of the three models, only DP_{PS} shows significant area under the ROC curve (Area = 0.779, 95% CI 0.549 to 0.906). Using a 25.1% drop from baseline to predict non-progressors, the sensitivity of DP_{PS} is 64.7% and the specificity is 87.5%.

Conclusion
Permeability-surface area product (PS) derived from the distributed parameter model shows better correlation with drug exposure and may predict patient outcome better than PS derived from the conventional compartmental model and the adiabatic tissue homogeneity model.

References