In vivo trans-pyloric mass movement dynamics measured by means of phase-contrast MRI

T. Hahn1, J. Curcic1, M. Buehrer1, O. Goetze2, W. Schwizer2, M. Fried2, A. Steingoetter1,2, S. Kozner1, and P. Boesiger1

1Institute for Biomedical Engineering, ETH and University Zurich, Zurich, Switzerland; 2Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland; 3Institute of Radiology, Klinikum rechts der Isar, Technical University München, Munich, Germany

Introduction: Detailed understanding of the process of digestion and absorption of nutrients is crucial for explaining how abnormal function of the gastrointestinal (GI) tract causes abdominal symptoms. Irregular nutrient absorption can significantly impair the efficiency of medication in the treatment of diseases, e.g. in diabetes and Parkinson’s disease (LIT). Gastric function has been studied by means of manometry, scintigraphy, electromyography, ultrasonography and recently by MRI, quantifying gastric volume, GI peristaltic frequency and antral flow [1]. Flow measurements by means of phase contrast (PC) MRI are a standard procedure in cardiac imaging and angiography which are characterized by periodic flow patterns and strong phase contrast effects. Flow measurements in the GI tract by means of PC MRI might likewise provide a valuable tool for detecting abnormal GI function. However, expected irregular flow patterns and velocities below 10cm/s [2] in the GI tract make it difficult to use phase-contrast MRI in this region, given that long phase encode gradients for low flow velocities further decrease the already low temporal resolution of this technique. The main goal of this work was therefore to study the feasibility of fast EPI readouts in PC imaging for measuring mass movement dynamics in the GI tract. Presumably, flow patterns are best defined and directed near the pylorus than the flow of nutrients into the intestines. In this pilot study we aimed at detecting gastroduodenal out- and backflow dynamic using EPI PC MRI.

Methods and Materials: All experiments were performed on a 3T whole-body MR system (Philips Healthcare, Best, The Netherlands). Phantom studies: The sequences used in vivo were tested in vitro using a TX151-filled phantom (25*13*40cm³) with immersed PVC tubes of inner diameter of 15mm that simulated the resolution of this technique. The main goal of this work was therefore to study the feasibility of fast EPI readouts in PC imaging for measuring mass movement dynamics in the GI tract. Presumably, flow patterns are best defined and directed near the pylorus than the flow of nutrients into the intestines. In this pilot study we aimed at detecting gastroduodenal out- and backflow dynamic using EPI PC MRI.

Results: Measured unwrapped velocities (Reference, Forward and Backward) in the phantom are shown in Table 1. A reference measurement at zero flow was performed in additional, using single-shot EPI, yielding (0.03±0.04) cm/s. Single-shot EPI scans showed geometric in-plane distortions of up to 23 pixels. For shallow breathing, the mean spatial through-plane shift was quantified as 1.2mm/s, max. 2.4mm/s. Backflow percentage in single-shot EPI was calculated to 0.26. The volumetric flow rate was estimated from the velocity data shown in Figure 2, assuming a mean pyloric diameter of 12mm [3], yielding a mean flow rate of 0.06 ml/s. Finally, a spectral analysis on the velocity time courses (Figure 2) was performed, revealing a prominent peak at 0.180 Hz (Figure 3).

Discussion: Velocity mapping based on phase-contrast images was successfully performed in the GI tract and showed good agreement with literature data. The velocities measured in vitro are in good agreement with the reference mean velocities and show acceptable standard deviations. For in vivo measurements, the estimated backflow percentage is in agreement with other measurements [4]. The measured velocities are likewise in the expected range, yielding a volume outflow of 250ml in approximately 14 min. The spectral peak coincides very well with the mean duodenal contraction frequency of 0.183 measured by Froehlich et al [1] indicating that mass movements behind the pylorus are primarily governed by duodenal contraction waves. The increase in temporal resolution using single-shot EPI compared to multi-shot EPI is therefore crucial for determining these high frequency movements. Administration of contrast agents was found to be essential in order to unambiguously identify the regions of interest containing the fluid with high signal intensity, considering possible image distortions arising in fast single-shot EPI scan.

We considered the measured motion shift non negligible, performing breath-hold for the later single-shot EPI scans. The effect of shallow breathing on flow measurements needs to be further analyzed and a scan protocol with slice tracking is recommended. The described preliminary results show high potential for fast PC MRI as being a valuable tool in characterizing intraluminal fluid movement. Further measurements using duodenal tube feeding as an in vivo velocity reference will have to be performed along with studies on different viscous liquid meals.