In vivo 1H MR studies of cortical metabolic response during insulin-induced hypoglycemia

H. Lei1,2, A. W. Magill1,2, V. Mlynarik1, and R. Gruetter1,3

1LIFMET, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2Radiology, University of Lausanne, Lausanne, Switzerland, 3Radiology, University of Geneva, Geneva, Switzerland

INTRODUCTION

Hypoglycemia induced energy deficits have been intensively studied through both in vitro and in vivo approaches due to received interests in clinical treatment of diabetes. Cerebral blood flow (CBF) and brain energy metabolites have been suggested to be involved in hypoglycemia (1-3 and references therein). Thus simultaneously studying both CBF and neurochemical metabolites can help understanding of the underlying mechanism of hypoglycemia induced energy deficits. MR techniques allow assessment of energy status (4), neurochemical constituents (4,5) and functional status (2) etc. With improved MR hardware and techniques, 1H MRS of regional brain tissue, such as cortical tissue can be studied in rats (6). Therefore, we explored the feasibility to study hypoglycemia in a step-down function using localized 1H MRS for neurochemical metabolites and continuous arterial spin labeling (CASL) for CBF.

METHODS

Under local veterinary authorities, seven male SD rats (270-350g) were prepared for MR studies under 2% isoflurane and switched to light α-chloralose anesthesia (~27mg/kg/hr continuous rate) immediately afterwards (2,6). Four stages of glycemia, mild hyperglycemia (<15mM), mild hypglycemia (2.5-3.5mM), hypglycemia (1-2mM), severe hypglycemia (<1mM) and mild hyperglycemia recovery (>5mM) were reached by continuously infusing both glucose (20% w/v) and insulin (2UI/mL). All animals were monitored for breathing, temperature and blood-pressure (90-200mmHg) using a MR compatible monitor system (SA Instruments) and rectal temperature was maintained at 37°C by circulating warm water. Blood gases were maintained within a normal physiological range (pH~7.4, PaCO$_2$~35-50mmHg, PaO$_2$>90mmHg) throughout the entire studies based on the concomitant arterial blood measurement using a nearby analyzer. In addition, plasma glucose was measured using a nearby glucose analyzer and well-maintained at steady-state levels by adjusting infusion rates accordingly. All MR studies were performed at 9.4T. Localized 1H MRS was applied on cortex (~400μL) using SPECIAL (TE/TR=2.8/4000ms, NT=160-320). MR spectra were processed and quantified using LCModel (5 and references therein). For CBF, two-coil system (one 0.8-mm-inner-diameter butterfly coil and one quadrature coil with two physically decoupled 14-mm-inner-diameter loops) was adopted for CASL as previously (2). These two coils were well decoupled (~30dB) and thus led to minimal magnetization transfer effects. 32 pairs of 2-mm slice thickness, single-shot GRE-EPI coronal images (RO=PE=25±25mm², 64×64 data matrix) at bregma 0-mm were acquired with a labeling module (gradient (1G/cm) and RF pulse (3sec, amplitude modulated)) or with no additional labeling module. An additional 6sec delay resulted in 10min for this acquisition. CBF was calculated from cortex as previously described (2). The magnetization transfer effects were evaluated on animals sacrificed at the end of studies.

RESULTS AND DISCUSSION

Five of animals underwent severe hypoglycemia and four of them recovered afterwards within physiological ranges. Throughout the entire studies, noticeable changes in both MR spectra and CBF images appeared at severe hypoglycemia (Figure 1C). Further quantitative results of cortical blood flow at euaglycemia (42.3±3.4mL/100g/min, 6.2±2.1mM), normal glucose (42.4±4.1mL/100g/min, 2.6±0.4mM), and raised to an elevated level at severe hypoglycemia (0.6±0.1mM), i.e. 190.1±35.0mL/100g/min (p<0.0001, Figure 2), were well documented and confirmed the spectral observation in figure 1 (Figure 3). Significant reductions in Glu, Gln, PCCr/Cr along with increased Asp were observed only in severe hypoglycemia (Figure 1 and 3). The metabolic changes were consistent with previous in vitro results along with hypoglycemia coma (iso-electric conditions, 4,7), which indicated strongly coupled neurochemical alterations in cortex and CBF responses in rat cortical tissue to insulin-induced hypoglycemia. In conclusion, 1H MR can allow measuring valuable neurochemical constituent information in conjunction with blood flow response during insulin-induced hypoglycemia. This opens possibilities of studying the mechanism of hypoglycemia and help consolidating in vivo observations and electrical physiology observations.

REFERENCES

ACKNOWLEDGMENT Supported by Centre d’Imagerie BioMédicale (CIBM) of the UNIL,UNIGE, HUG, CHUV, EPEFL, the Leenaards and Jeantet Foundations, and SNF 3100A0--122948.