In vivo detection of axonal plasticity in rat hippocampus using DTI

T. Laitinen¹, A. Sierra¹, A. Pitkänen¹, and O. Gröhn¹
¹A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland

Introduction
After brain injury, several neurobiological alterations occur including structural plasticity of axons that has been found to be an important response to brain injury [1]. It has been shown that mossy fiber sprouting correlates with fractional anisotropy measured by diffusion tensor imaging (DTI) [2] and diffusion spectrum imaging [3], ex vivo. This study demonstrates the capability of in vivo DTI to detect changes in dentate gyrus sub region of rat hippocampus after kainic acid (KA) induced status epilepticus.

Methods
Nine Male Wistar rats received KA (10 mg/kg, i.p.) injections inducing status epilepticus and five age- and weight-matched animals served as controls. 17 months later in vivo DTI was carried out in a 7 T magnet interfaced to a Varian console using a volume RF-coil as transmitter and a quadrature surface coil as receiver. For in vivo DTI, a single-slice segmented spin-echo EPI with a navigator echo for phase correction (TR=2s, TE=27ms, 16 segments, slice thickness 0.75 mm, axial slice, data matrix 256×256, FOV=30×30 mm², 32 averages for each k-space line) was used and six images with diffusion weighting (diffusion time 15 ms, b-value 1000 s/mm²) in six directions and one image without diffusion weighting were obtained from septal dentate gyrus. After in vivo DTI the animals were perfused transcardially with Na₂S (30 ml/min for 10 minutes) and 4% paraformaldehyde (30 ml/min for 10 minutes) and brains were dissected from the cranium. To see whether in vivo DTI results correlate with ex vivo DTI the brains were scanned in a 9.4 T magnet interfaced to a Varian console using a quadrature volume RF-coil as transmitter and receiver. Ex vivo DTI was performed using a 3D spin echo sequence (TR=1s, TE=30ms, data matrix 256×72×60 zero padded to 256×144×120, FOV 29.3×16.5×13.7mm³). Six 3D images with diffusion weighting (diffusion time 17 ms, b-value 1000s/mm²) in six orthogonal directions and one image without diffusion weighting were obtained. From the measured data maps of fractional anisotropy (FA) were created. Timm-staining was used to assess mossy fiber sprouting and gold chloride staining to assess myelinated axons in the dentate gyrus.

Results
The results show a significantly increased FA (p<0.01) in the dentate gyrus of KA-treated rats when compared to controls as observed in vivo and ex vivo (Figs 1 and 2). Also a good correlation was found between FA values obtained in vivo and ex vivo (R=0.83, p<0.01). The FA changes follow the increase in the density of mossy fiber sprouting and myelinated axons seen in histology sections (Fig. 3).

Conclusions
The increase in the fractional anisotropy due to axonal plasticity can also be detected using in vivo DTI. As DTI is completely non-invasive technique and commonly used in clinical settings, these results may have implications for the detection of axonal plasticity after several types of brain injury.

References

Figure 1. FA maps derived from in vivo (A, C) and ex vivo DTI (B, D) for a control rat and a KA-treated animal. The white arrows point to the left dentate gyrus. Abbreviations: cc: corpus callosum.

Figure 2. A) FA-values (mean±SD) determined from in vivo and ex vivo DTI for left septal dentate gyrus in control and KA-treated animals

B) Pearson correlation between FA values obtained using in vivo and ex vivo DTI from left septal dentate gyrus. **p<0.01 as compared to controls

Figure 3. Photomicrographs of Timm stained sections (A, C) and myelin stained sections (B, D) of a control (A, B) and a kainic acid treated (C, D) animals. Black arrows indicate mossy fiber sprouting in the inner molecular layer of a kainic acid treated animal in Timm stained section (C). White arrows show increased density of myelinated fibers in outer molecular layer in myelin stained section (D). Scale bar: 500 μm.