Characterization of carotid plaque in-vivo and ex-vivo using MRI, CTA and histology

M. R. Lopez Gonzalez1, W. M. Holmes1, W. Stewart1, K. W. Muir1, B. Condon1, G. Welch1, and K. Forbes1

1SINAPSE, Clinical Physics, University of Glasgow, Glasgow, United Kingdom, 2GEMRIC, Wellcome Surgical Institute, Faculty of Medicine, University of Glasgow, Glasgow, United Kingdom, 3Department of Neuropathology, Institute of Neurological Sciences, Southern General Hospital, Glasgow, United Kingdom, 4Division of Clinical Neurosciences, University of Glasgow, Glasgow, United Kingdom, 5Institute of Neurological Sciences, Southern General Hospital, Glasgow, United Kingdom, 6Vascular surgery, Southern General Hospital, Glasgow, United Kingdom

Introduction

Surgical excision of atherosclerotic carotid plaque (carotid endarterectomy, CEA), based on the extent of luminal narrowing, reduces risk of subsequent stroke. However, 70% of patients with severe stenosis remain stroke-free over the next 5 years with medical therapy alone. Outcomes from CEA could be improved by targeting treatment at high-risk subgroups. Atherosclerotic plaque morphology and plaque composition may identify unstable or vulnerable plaque that defines higher risk.

Recent publications have shown that in-vivo 1.5T MRI can identify the main components of the atherosclerotic plaque, such as the lipid–rich/necrotic core (LR/NC), calcification and haemorrhage. This study aims to evaluate the ability to identify all major carotid plaque components in in-vivo 3T, ex-vivo 7T MRI, CTA and correlation with histology.

Methods

Datasets were obtained from 30 selected symptomatic stroke patients (71±15 years). Subjects were imaged using 3T MR scanner (Sigma Excite, GE). T1-weighted (T1-w) pre/post contrast, T2-weighted (T2-w), Proton Density-weighted (PD-w) and MRA time-of-flight (ToF) scans were carried out. T1-w, T2-w and PD-w were carried out with 0.27x0.27x2.8 mm\(^3\) resolution. The CTA studies were obtained on a CT scanner (Brilliance 64 slice, Philips) with 0.34x0.34x0.33 mm\(^3\) view as a standard. T1-w, T2-w (100x100x100 μm\(^3\)) distinguished on ToF images. Calcification is defined by the conventional AHA classification.

MRI datasets were review separately by experts blinded to the specimen. The CTA studies were obtained on a CT scanner (Brilliance 64 slice, Philips) with 0.34x0.34x0.33 mm\(^3\). From the patients studied in-vivo, 14 of them underwent CEA. The specimens from these patients were imaged on a Bruker Biospec Avance system using a 7T horizontal 30 cm bore magnet. Carotid plaque specimens were imaged in a sealed syringe filled with fomblin, to reduce susceptibility artefacts. A small phantom containing MgCl\(_2\) was placed within the field of view as a standard. T1-w, T2-w (100x100x100 μm\(^3\) isotropic resolution) and diffusion weighted images (DWI) (181x181x181 μm\(^3\) isotropic resolution) were carried out. We segmented the different plaque components by multiple thresholding of the MR signal and using a semi-automated analysis programme in MatLab.

Serial sections of the specimens were taken and stained with haematoxylin-eosin and Elastic van Gieson. Digital images of the histological preparations were acquired at 0.54x0.54 μm\(^3\) resolution. Histological correlation with the in-vivo 3T and ex-vivo 7T MRI data was carried out. All the images of the different modalities were co-registered using a commercial package Analyze (Biomedical Imaging Resource, Mayo Foundation).

Results

MR signal intensity was converted to signal intensity (SI) relative to the adjacent muscle. Then MR images were subdivided by signal threshold into hyperintense, isointense and hypointense. Carotid plaque was segmented into LR/NC, fibrous tissue, dense fibrous cap and calcification using the semi-automated method programmed. LR/NC was identified as isointense to hypointense on T1-w and PD-w images. This variation is due to the amount and age of haemorrhage presented\(^3\). Fresh or recent haemorrhage can be best distinguished on ToF images. Calcification is defined as hypointense signal in all the weightings. T1-w pre/post contrast images help to identify fibrous caps. CTA was used to verify the calcium content in the plaque. Histology and MRI datasets were review separately by experts blinded to each other technique and classified using the criteria established by the conventional AHA classification.

Bibliography