Targeted magnetic delivery of Cells with an MRI scanner

J. Riegler1,2, J. A. Wells1, P. Kyrtatos1, A. N. Price1, and M. F. Lythgoe1

1Centre for Advanced Biomedical Imaging (CABI), Department of Medicine and Institute of Child Health, University College London (UCL), London, United Kingdom, 2Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPEX), UCL, London, United Kingdom

Introduction
One of the challenges in the biomedical sciences is to develop concurrent MR imaging and targeting of labelled cells in the body. In recent years the use of cells to repair damaged tissue has led to only modest success, in part due to low uptake at the site of injury.1 Cell therapies would greatly benefit from methodology aimed at targeting cell traffic. Magnetic delivery has been proposed for localized delivery. Permanent magnets placed outside of the body have been used for magnetic delivery in animal models2-6 and clinical trials7. However the fast decay of magnetic forces with increasing distance from the external magnet restricts the applicability of this approach to tissues or organs which are close to the body surface. High performance MR gradient coils produce homogeneous magnetic field gradients that penetrate the whole body. Work by other groups has shown that these field gradients are strong enough to move magnetic objects inside the scanner1,8,9. A clinical 1.5T system has been used to image and navigate a 1.5mm diameter ferromagnetic bead in a flow-isolated swine artery9. In addition, a recent phantom study showed that dedicated gradient coils could divert magnetic ferrofluid as proof of principle for selective deposition of intravascular particles1.

In this work we demonstrate for the first time the feasibility of targeted cell delivery by steering magnetically labelled stem cells using MR imaging gradients in a vascular bifurcation flow model. Our initial findings support the potential value of MRI for improved targeting of intravascular cells.

Methods
Theoretical modelling indicated the feasibility of moving cells with the field gradients provided by the gradient coils of a high field MRI system. We therefore created a model for a bifurcation of a small artery. Experiments were performed using a custom designed vascular bifurcation model (see Figure 1), connected to an infusion pump (Harvard Instruments PH P2000). The bifurcation was placed into the centre of a 9.4T experimental scanner (Varian, 60 mm bore size, gradients: rise time 5 T m⁻¹ ms⁻¹, max. 1T/m), with the direction of flow parallel to B₀ (Z). Human mono nuclear cells were labelled with nanometre or micrometer sized super paramagnetic iron oxide particles Endorem (Ω 200nm) or Bangs Particles (Ω 1.5 µm). 0.5 ml of labelled cells (2*10⁶ cells/ml) were infused at flow rates of 0.06 ml/min to 1.8 ml/min leading to a mean velocity of 0.2 cm/s to 6 cm/s whilst gradients (amplitude 500mT/m) were applied in the X direction, perpendicular to the direction of flow. Gradients were pulsed due to hardware limitations (2ms on, 7ms off). The cell suspensions leaving each bifurcation outlet tubes (volume 0.25ml each) were collected and cell concentrations were estimated using a hemocytometer. The direction of the gradients was then reversed and 0.5 ml cell suspension was infused as before. The process was repeated three times for each direction.

Results
Following application of the magnetic field gradient from the MRI system, there was up to 50% increase in the number of cells reaching the outlet to which the gradients were directed. This was apparent for both gradient directions (Figure 2). Steering of cells to one outlet tube led to a susceptibility increase which could be seen on gradient echo images.

Conclusions
Our results show that a MRI scanner can be used to steer cells into the desired direction in a vascular bifurcation model. We also show the possibility of using MR imaging to confirm targeting success. These initial findings provide evidence to support the potential of magnetic targeting of cells using MRI for future clinical applications, allowing image guided targeted delivery of cells and other therapeutic agents to sites of the body which cannot be reached with external permanent magnets. This approach could improve localization and simultaneous monitoring of cells in organ systems such as the liver or the brain and may prove complementary to the systemic injection of cell therapies, thus expanding the role of stem cell therapies.

References