Estimating Model Uncertainty when fitting Multiple b-value Diffusion Weighted Imaging

M. R. Orton1, D. J. Collins1, D.-M. Koh2, M. Germuska2, and M. O. Leach3

1CR-UK and EPSRC Cancer Imaging Centre, Institute of Cancer Research, Sutton, Surrey, United Kingdom, 2Department of Radiology, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom

Introduction

A number of different models have been proposed in the literature for describing diffusion-weighted data acquired with a range of b-values. Due to data acquisition limitations these models have typically been applied in the brain, but more recent developments have enabled diffusion weighted imaging (DWI) to be obtained from other regions of the body, including the abdominal and pelvic organs. Based on the physiology of these organs a number of models have been suggested that link in with known organ physiology, especially in relation to anomalous diffusion, distributions of diffusion rates and perfusion effects. However, due to the complexity of the micro-environment being probed in a diffusion experiment, these links remain uncertain in human systems, and there is even greater uncertainty when considering tumours. There is little work that looks at determining the relative statistical appropriateness of these or other models for application to a given data set. In this abstract we present a Bayesian methodology for estimating the posterior model probability for a given selection of models. This probability is of interest to indicate statistical model uncertainty, and therefore uncertainty in the interpretation of the data. This methodology also has the potential to provide metrics that are more stable, and therefore more sensitive to a wider range of treatment effects than existing methods.

Signal Models

Four diffusion signal models are considered here, though the statistical framework for model selection given later extends directly to other models.

\[M_i : S(b) = S_0 \exp(-bD^*) \]

\[M_2 : S(b) = S_0 \exp(-bD^*) - S_1 \exp(-bD) \]

\[M_3 : S(b) = S_0 \pi(D) \exp(-bD^*) - S_1 \exp(-bD) \]

\[M_4 : S(b) = S_0 \left(f \exp(-bD^*) + (1-f) \exp(-bD) \right) \]

\(M_i \) is derived from a pure diffusion process; \(M_2 \) is derived from a sub-diffusion process [1]; \(M_3 \) assumes that the data arises from a population of particles with diffusion rates defined by the distribution \(\pi(D) \), a normal distribution truncated below zero [2] with mode \(\Delta \) and variance \(\sigma_0^2 \); \(M_4 \) is a bi-exponential form where the first term comes from an intra-voxel incoherent motion (IVIM) model [3], typically associated with a perfusion effect, and the second term describes a diffusion effect.

Bayesian Model Selection

Bayesian methods can be used to derive posterior model probabilities that indicate how well each model is supported by the data. This approach requires the specification of prior distributions for all unknown parameters, and likelihood functions describing measurement errors. An important feature of using Bayesian Inference is that more complex models are appropriately penalised relative to simpler models that fit the data equally well, given the data SNR. From each of the above signal models we derive a likelihood function, the form of which reflects the measurement noise model – here we use a Gaussian model. Each model uses a different set of parameters: \(\theta = \{ S_0, D \} \) for \(M_1 \); \(\theta = \{ S_0, D, \pi(D) \} \) for \(M_2 \); \(\theta = \{ S_0, \Delta, \sigma_0^2 \} \) for \(M_3 \) and \(\theta = \{ S_0, D, D^*, \sigma_0^2 \} \) for \(M_4 \). Prior distributions are needed for all unknown parameters for all models, and these are chosen to reflect known limits and plausible values, while being sufficiently dispersed to introduce minimal bias to the posterior parameter estimates. The following distributions and 95\% prior probability intervals are used: Gaussian distribution with 41.2 < \(S_0 \) < 158.8 for all models; log-Gaussian distribution with 1.3 x 10^4 < \(\Delta \) < 6.5 x 10^3 mm^2/sec for models 1, 2, 4, and also for \(\Delta \) in model 3; Uniform distribution with 0.025 < \(\Delta \) < 0.975 for model 2; Uniform distribution with 0.125 x 10^3 < \(\sigma_0^2 \) < 4.875 x 10^-3 mm^2/sec for model 3; Uniform distribution with 0.025 < \(f \) < 0.975 for model 2; log-Gaussian distribution with 4.3 x 10^-3 < \(D^* \) < 0.21 mm^2/sec for model 4. The prior probability for each model is also required and is set to 1/4 for all models, indicating no prior model preference. Bayesian Inference combines the likelihood and prior distributions to give a posterior probability for each model. This inference process essentially involves averaging the data fit quality of each model over the whole parameter space, which amounts to a multidimensional integral, implemented with a grid-based approach here. In contrast, non-Bayesian methods typically compare the data fit quality of each model for the best fitting parameters only, which leads to less robust results.

Data Acquisition

Axial diffusion-weighted images were acquired under free-breathing using a 1.5T Siemens Avanto with a multi-slice EPI sequence with the following parameters: 20 x 5mm slices, FOV = 380mm, 128 x 128, 6/8 partial acquisition in PE direction, TE = 69ms, TR = 3500ms, NSA = 6, GRAPPA factor = 2, SPAIR fat suppression, b-values = 0, 50, 100, 300, 600, 900, 1050 mm^2/sec, 3 orthogonal directions, 3-scan trace images, acquisition time 6 min 51 sec.

Results & Discussion

Figure 1 shows maps of the posterior model probability calculated from nine slices covering a liver metastasis. This example is typical of tumours we have analysed and indicates a large degree of suppression, b-values = 0, 50, 100, 300, 600, 900, 1050 s/mm^2, 3 orthogonal directions, 3-scan trace images, acquisition time 6 min 51 sec.

<table>
<thead>
<tr>
<th>Case</th>
<th>Location</th>
<th>Model</th>
<th>M1%</th>
<th>M2%</th>
<th>M3%</th>
<th>M4%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Liver</td>
<td></td>
<td>23.5</td>
<td>8.7</td>
<td>42.4</td>
<td>15.4</td>
</tr>
<tr>
<td>2</td>
<td>Pelvis</td>
<td></td>
<td>28.8</td>
<td>27.5</td>
<td>33.3</td>
<td>10.5</td>
</tr>
<tr>
<td>3</td>
<td>Liver</td>
<td></td>
<td>43.8</td>
<td>10.0</td>
<td>39.1</td>
<td>7.0</td>
</tr>
<tr>
<td>4</td>
<td>Pelvis</td>
<td></td>
<td>26.1</td>
<td>14.1</td>
<td>48.2</td>
<td>11.6</td>
</tr>
<tr>
<td>5</td>
<td>Liver</td>
<td></td>
<td>41.0</td>
<td>6.7</td>
<td>48.2</td>
<td>4.1</td>
</tr>
<tr>
<td>6</td>
<td>Pelvis</td>
<td></td>
<td>40.2</td>
<td>15.6</td>
<td>33.3</td>
<td>10.8</td>
</tr>
<tr>
<td>7</td>
<td>Pelvis</td>
<td></td>
<td>23.2</td>
<td>26.3</td>
<td>34.7</td>
<td>15.8</td>
</tr>
</tbody>
</table>

Table 1: Percentage of voxels preferring each model.

Table 1: Percentage of voxels preferring each model. The model preferences are not the most parsimonious description of the data chosen from the available models. Using over-parameterised models typically leads to better data fits, but the parameter estimates tend to be noisy due to large correlations between unnecessary parameters. Using the most parsimonious model is advantageous because the model complexity is matched to the data, and hence the parameter estimates tend to be more stable. The model preferences can be used as a metric describing the data, and we are currently investigating this in relation to treatment response of tumours. All four models have diffusion and amplitude parameters, so it is possible to compute model-averaged \(D \) and \(S_0 \) estimates for each voxel that may also be of use detecting treatment response. Similar metrics are needed for the other model parameters, but as these are specific to each model, further work is needed to determine the best method for combining estimates of these parameters with the rest of the analysis.

Conclusions

A Bayesian methodology has been presented for analysing diffusion weighted images acquired with multiple b-values that gives posterior probabilities for a collection of signal models. These probabilities should only be interpreted as indicating the most parsimonious description of the data, and NOT as an indication of the true underlying diffusion processes. Examples have been presented indicating that the preferred model is highly heterogeneous within and between tumours.

Acknowledgements

We acknowledge the support received from the CRUK and EPSRC Cancer Imaging Centre in association with the MRC and Department of Health (England) grant C10600/A10334, also NHS funding to the NIHR Biomedical Research Centre.