Intrinsic Susceptibility-Weighted MRI to assess the response of Combretastatin-A4-Phosphate during radiotherapy for prostate cancer

R. Alonzi1, P. J. Hoskin1, N. J. Taylor2, Q. S. Ng3, H. Mandeville1, U. Patel4, J. J. Stirling2, J. A. d’Arcy5, M. O. Leach2, and A. R. Padhani2
1Marie Curie Research Wing, Mount Vernon Cancer Centre, Northwood, London, United Kingdom, 2Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, London, United Kingdom, 3CRUK-EPSCR Cancer Imaging Centre, Institute of Cancer Research & Royal Marsden Hospital, Sutton, Surrey, United Kingdom

Aim: To demonstrate prostate gland oxygenation changes induced by the vascular disrupting agent Combretastatin-A4-Phosphate (CA4P) during a course of radiotherapy, using Intrinsic Susceptibility-Weighted MRI (ISW-MRI).

Introduction: Radiotherapy is increasingly being delivered in combination with novel pharmaceuticals in order to improve efficacy. The performance of imaging biomarkers for response assessment may be compromised by the differing or conflicting effects between drug and radiation on tumor tissues. Preclinical studies have shown a potential therapeutic benefit from the addition of the vascular disruptive agent CA4P to radiotherapy, which produces marked vascular shutdown in tumors. We have previously shown that the Dynamic Contrast MRI (DCE-MRI) derived parameter K sinister has the potential to demonstrate changes in prostate vascularity following CA4P administration. However, K sinister was not capable of fully describing the acute consequences of CA4P-mediated vascular shutdown during radiotherapy. In particular, it was not possible to show significant decreases in K sinister following vascular recovery after CA4P delivery, contrary to previously published K sinister data on CA4P used alone. This is likely to be due to the well-established acute hyperemia caused by radiotherapy, which appears to mask CA4P mediated tumor vascular disruption. This study evaluated whether R sinister, calculated from ISW-MRI data, may be a more suitable biomarker to assess vascular response during radiotherapy.

Patients and Methods: 18 patients due to undergo radical radiotherapy (57Gy in 19 fractions) following neoadjuvant hormonal therapy for prostate cancer (Gleason >6, PSA >20ng/ml or T3/4) were recruited prospectively in 3 cohorts as part of a Phase Ib toxicity determining study. Cohort 1 received CA4P (50mg/m²) on radiotherapy day 5 only. Cohort 2 received weekly CA4P (50mg/m²) on radiotherapy days 5, 12 and 19. Cohort 3 received weekly CA4P (63mg/m²) on radiotherapy days 5, 12 and 19. A matched control group of 10 patients received the same radiotherapy schedule without CA4P. Imaging was performed on eight occasions: two baseline scans prior to radiotherapy (1&2); three scans at the end of the first week of radiotherapy: before CA4P, 4hrs and 72hrs after CA4P (3,4&5); three more scans at the end of the third week of radiotherapy: before CA4P, 4hrs and 72hrs after CA4P (6,7&8). The control group only received 5 scans (scans 2,6&7 were omitted). At each time point anatomical images were acquired following vascular recovery after CA4P delivery, contrary to previously published K sinister data on CA4P used alone. This is likely to be due to the well-established acute hyperemia caused by radiotherapy, which appears to mask CA4P mediated tumor vascular disruption. This study evaluated whether R sinister, calculated from ISW-MRI data, may be a more suitable biomarker to assess vascular response during radiotherapy.

Results and Discussion: 18 CA4P and 10 control patients were recruited. One patient in cohort 3 discontinued vascular disruptive therapy because of toxicity and was removed. There were significant reductions in R sinister in both treatment and control groups at the end of the first week, in keeping with the reactive hyperemia and the known reoxygenation effects of radiotherapy (see table). R sinister increased significantly in response to CA4P at both 1 and 3 weeks (figure 1). No such effect was seen in the control group. This effect was significant for the CA4P group as a whole and for each cohort separately (apart from cohort 3 at 3 weeks due to the small number of patients evaluable). R sinister returned to baseline within 72 hours of CA4P infusion. We conclude that R sinister has the potential to be an alternative, clinically useable, response biomarker for assessment of vascular disruptive therapy in combination with radiotherapy in prostate cancer. In contrast to DCE-MRI, R sinister is able to reveal therapeutic effects even after radiotherapy has begun.