Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Early Therapy Evaluation of Combined Anti-EGFR Antibody and Irinotecan in Orthotopic Pancreatic Tumor Xenografts

H. Kim1, K. Folks1, L. Guo2, J. Sellers2, N. Fineberg4, C. Stockard1, W. Grizzle1, D. Buchsbaum1, D. Morgan1, J. George2, and K. Zinn1
1Radiology, University of Alabama at Birmingham, Birmingham, AL, United States, 2Surgery, University of Alabama at Birmingham, Birmingham, AL, United States, 3Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States, 4Bisatistics, University of Alabama at Birmingham, Birmingham, AL, United States, 5Pathology, University of Alabama at Birmingham, Birmingham, AL, United States, 6Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, United States

Purpose: To evaluate DCE-MRI as an early prognostic tool for effective anti-EGFR therapy with/without concurrent chemotherapy in an orthotopic pancreatic-cancer murine model, and to develop a novel timing-independent DCE-MRI biomarker for early therapy assessment, based on characterization of non-linear tumor response observed during serial imaging.

Methods: Groups 1-4 (n=6/group) of SCID mice bearing orthotopic pancreatic adenocarcinoma (luciferase-positive MIA PaCa-2) were treated with PBS (control), cetuximab (1mg), irinotecan (25mg/kg), or cetuximab plus irinotecan respectively twice weekly for 3 weeks. DCE-MRI was performed on days 0, 1, 2, and 3 after therapy initiation, while anatomical MRI was performed once weekly for 3 weeks. Bioluminescence imaging was performed on days 0 and 21. At day 21, all tumors were collected for CD31 and Ki-67 staining. Groups 5 (n=5) and 6 (n=4) were injected with Tc-99m-cetuximab and Tc-99m-isotype control antibody respectively; SPECT/CT imaging was performed at 6 hours after dosing, and biodistribution studies were performed at 24 hours after dosing. The averaged Ktrans values in the entire tumor region or within the 0.5-mm thick peripheral tumor region were calculated. The best-fitting 2nd-order polynomial curves for the Ktrans changes were retrieved, and the quadratic coefficient for each curve was proposed as the novel MR biomarker. Ktrans, ve, and tumor-volume measurements made among the groups 1-4 over 3 days (or 21 days for tumor volume) were analyzed using repeated measures analysis of variance (RM ANOVA). Comparisons for a single measurement were done using one-way ANOVA followed by Tukey’s HSD (Honestly Significant Differences) test. The pearson correlation coefficient was used to look at the relationships between two variables.

Results: In vivo SPECT/CT images visualized the significantly higher tumor uptake of Tc99m-cetuximab than of Tc99m-isotype control antibody, which was confirmed by biodistribution study; the tumor uptake of Tc99m-cetuximab was 19.0±6.6 %ID/g, which was significantly higher than that of Tc99m-isotype control antibody (6.5±12.2 %ID/g) (p<0.001), whereas the blood concentration of Tc99m-cetuximab (10.4±0.5 %ID/g) was not different from that of Tc99m-isotype control antibody (10.2±2.8 %ID/g) (p=0.949). Figure 1 shows representative dynamic contrast-enhanced MR images of a mouse at (A) 1 minute before and (B) 2 minutes after gadoteridol injection using the same intensity scale with (C,D) Ktrans and (E,F) ve, maps of the (C,E) entire tumor regions or (D,F) 0.5-mm thick peripheral tumor regions. The boundary of the tumor region is indicated with a red dotted circle in Figs. 1A and 1B. The change in Ktrans values of groups 1-4 for 3 days after therapy initiation were 83±33%, 63±28%, 17±16%, and 12±18% respectively in the entire tumor region without statistical difference among any of the groups. However, when analyzed in peripheral tumor region, change in Ktrans values were 102±16%, 42±21%, 15±6%, and -19±5% respectively (Fig. 2). The significant suppression of Ktrans increase was detected after irinotecan (p=0.008) or combination therapy (p<0.001). The change in ve, values of groups 1-4 for 3 days after therapy initiation were 67±42%, 28±9%, 8±16%, and -12±10% respectively in the entire tumor region, while those in the peripheral tumor region were 77±43%, 26±12%, 13±11%, and -20±7% respectively, but no significant difference was detected among groups in either region. Figure 3 shows tumor-volume change of groups 1-4 during 21 days after therapy initiation; the mean tumor volumes of all four groups increased about 20% during the first 3 days without statistical difference (p>0.050). However, for the entire 3 weeks, the tumor-volume increase was significantly suppressed by either monotherapy or combined therapy (p<0.050). The Ktrans changes observed for 3 days in the peripheral region were significantly correlated with tumor-volume changes (p<0.001) and bioluminescence-signal changes (p=0.050). The microvessel densities (CD31 stained) of groups 1-4 were 1.60±0.25%, 0.64±0.13%, 0.53±0.09%, and 0.27±0.05% respectively, while the proliferating cell densities (Ki-67 stained) of groups 1-4 were 85.3±18%, 70.3±5.4%, 70.8±4.4%, and 48.3±7.1% respectively. The Ktrans changes for 3 days in peripheral region were significantly correlated with microvessel densities (p=0.002) and proliferating-cell densities (p=0.001). Of interest, the mean Ktrans changes of all 4 groups in peripheral tumor region followed second-order polynomial curves, validated with high R2 values (≥0.73). The quadratic coefficient of each curve was proposed as a novel DCE-MR based biomarker; the mean value of novel biomarker of groups 1-4 were 0.050±0.026, -0.015±0.028, -0.071±0.021, and -0.082±0.013 respectively, and those of groups 3 and 4 were significantly lower than that of control (p=0.006 and 0.003 respectively). The values of the novel biomarker were significantly correlated with tumor-volume changes (p<0.001), bioluminescence-signal changes (p=0.019), microvessel densities (p=0.002), and proliferating-cell densities (p=0.001).

Conclusion: This study supports the clinical use of DCE-MRI to evaluate an anti-EGFR therapy combined with chemotherapy for pancreatic adenocarcinoma, identifies a novel timing-independent DCE-MRI based biomarker, and proposes further application of this therapeutic surveillance strategy in human subjects to ultimately achieve more favorable patient-specific clinical outcomes.

Figure 1. Representative DCE-MRI images at (A) 1 minute before and (B) 2 minutes after gadoteridol injection with (C,D) Ktrans and (E,F) ve, maps of the (C,E) entire tumor regions or (D,F) 0.5-mm thick peripheral tumor regions.

Figure 2. Ktrans changes of groups 1-4 during 3 days post therapy in the 0.5-mm thick peripheral tumor region.

Figure 3. Tumor volume changes of groups 1-4 during 21 days after therapy initiation.