The heart is the most energy-demanding organ because of its non-stop contraction. There is increasing evidence that abnormal mitochondrial function and energy metabolism are characteristic of several prevalent cardiac diseases. However, our fundamental understanding of cardiac energetics in diseased hearts remains poor. To date, most of the studies on mitochondrial function have been performed in isolated mitochondria or with in vitro tissue samples. Observation of the production of metabolic H\textsubscript{2}17O from the reduction of H\textsubscript{2}17O-oxygen provides the opportunity to evaluate mitochondrial oxidation capacity in intact, viable tissues (1,2). However, applications of H\textsubscript{2}17O MRI for evaluating mitochondrial function have been limited due to the challenge of detecting metabolic H\textsubscript{2}17O in the vast background of natural abundance H\textsubscript{2}17O. In this study, we developed a direct H\textsubscript{2}17O MR Spectroscopy (MRS) approach to examine the feasibility and sensitivity of detecting metabolically produced H\textsubscript{2}17O in intact hearts at different workload.

Methods

Sensitivity optimization of perfused heart H\textsubscript{2}17O MRS methodology Several improvements were made to our cardiac perfusion apparatus to improve the sensitivity of H\textsubscript{2}17O detection. First, we developed a closed-loop perfusion system with significantly reduced perfusate volume (26 ml vs. >1 L) to reduce natural abundance H\textsubscript{2}17O signal. The recycling perfusate was also continually oxygenated by inserting a 17O\textsubscript{2}-filled silicone tubing into the perfusion line to allow the 17O\textsubscript{2} gas to permeate into the perfusate. In addition, theophylline, an adenosine antagonist, was infused at 0.5 ml/min to maintain ventricular function despite adenosine accumulation.

Animal Models Isolated hearts from 2-month male Sprague-Dawley rats were perfused with oxygenated buffer containing 10 mM glucose at different [Ca2+] (1.5 or 2.5 mM, n=5 for each group) to induce normal/high workload. Left ventricular developed pressure (LVDP) and heart rate (HR) were measured via a water-filled balloon connected to a pressure transducer. At the start of the perfusion protocol, 16O\textsubscript{2}-oxygenated perfusate was supplied for 15 min to ensure metabolic equilibrium. A 31P spectrum was collected to verify the metabolic status of the heart. A natural abundance H\textsubscript{2}17O spectrum was then collected for background subtraction. Once the perfusate was switched to 17O\textsubscript{2}-oxygenated buffer, dynamic acquisition of 17O spectra began immediately for over 5 min.

Dynamic 17O NMR measurements 17O spectra were acquired on a Bruker 9.4T vertical-bore spectrometer with a 20 mm broadband NMR probe. Field homogeneity was adjusted by shimming on the proton signal to a linewidth of 30–50 Hz. Sequential 17O spectra were acquired at 20 s temporal resolution with 64 averages. H\textsubscript{2}17O was quantified by fitting the resonance peaks with Lorentzian curves followed by the integration of the peak area. The time course of metabolic H\textsubscript{2}17O accumulation was obtained by normalizing signal intensity to natural abundance H\textsubscript{2}17O concentration.

Kinetic model and analysis To quantify mitochondrial respiration rate from 17O data, we developed a compartmental model that describes the transport and production of metabolic H\textsubscript{2}17O during perfusion. Myocardial O\textsubscript{2} consumption rate (MVO\textsubscript{2}) was determined from least-square fitting of the model to NMR-measured H\textsubscript{2}17O concentration. MVO\textsubscript{2} was also calculated from the coronary flow and the difference in O\textsubscript{2} tension between the arterial supply line and the coronary effluent measured with a blood/gas analyzer.

Results

Rate pressure product (RPP=LVDP×HR) increased from 17,000±3,700 mmHg/min at normal [Ca2+] to 29,500±5,200 mmHg/min at high [Ca2+] (p<0.05). Both groups showed normal PCR/ATP ratio measured by 31P spectra (1.5±0.2 vs. 1.43±0.2). Dynamic 17O NMR spectra showed progressive increase of H\textsubscript{2}17O resonance peak (Fig. 1a), suggesting steady production of mitochondrial H\textsubscript{2}17O. Hearts perfused with high [Ca2+] demonstrated accelerated increase in 17O signal (Fig. 1b). Compared to normal workload, model-determined MVO\textsubscript{2} increased from 3.3 to 7.0 \textmu mol/min/g under high workload. Measured MVO\textsubscript{2} were 3.3±0.5 and 6.2±0.2 at normal and high workload, respectively.

Discussion and Conclusion

In the current study, we demonstrated the feasibility and sensitivity of dynamic 17O MRS in detecting altered metabolic rate associated with changes in cardiac workload. In combination with kinetic modeling, this high temporal resolution MRS method has the potential to quantify mitochondrial respiration rate within 5 min of data acquisition.

References