A Systematic Approach to MR Imaging of Vascular Anomalies

Elizabeth M Hecht, MD
Rafael Rivera, MD
Assistant Professor
New York University
ISMRM 2009
Case Based Learning
Honolulu, Hawaii
April 23, 2009-11:50 am

Objectives
- Understand the role of MRA in assessment of vascular anomalies
- Become familiar with the classification system of anomalies
- Describe a systematic approach to differentiation of anomalies
- Review characteristic imaging features of the more common entities

Field of Vascular Anomalies
- Complex, widely misunderstood
- Generically “vascular birthmarks”
- Fairly common
 - Hemangiomas 3-10%
 - Malformations ~ 0.5%
- 1982 Mulliken & Glowacki
 - Classification scheme based on:
 - Biological differences
 - Pathologic differences
- Further refined, 1996 ISSVA

MRI of Vascular Anomalies
- CE-MRI is the ideal radiologic exam
- Non-invasive, no iodinated contrast, no radiation
- Cons: sedation, $
- Why MRI?
 - Define lesion extent
 - Evaluate flow characteristics anatomic and temporal
- Classify anomaly into a category based on flow characteristics and imaging appearance
- Keep in mind → clinical context is very important

Classification of Vascular Anomalies

VASCULAR ANOMALIES

- INFANTILE HEMANGIOMA
- CONGENITAL HEMANGIOMA
- HEMANGIOENDOTHELIOMA
- Tufted Angioma
- MALIGNANT NEOPLASM

- PROLIFERATIVE VASCULAR ANOMALIES
- STATIC VASCULAR MALFORMATIONS

- CAPILLARY
- VENOUS
- ARTERIAL
- LYMPHATIC

Standard MR Protocol
- Localizer
- T2 FSE FS fat-suppressed sequence
 - At least 2 planes, coverage large field of view
 - IR may be used as an alternative if poor Freq. Selective FS
- SSFSE, single plane look for flow voids
 - +/- non FS T1 SE, single plane (axial)
 - 3D T1 fat-suppressed GRE pre, axial and/or coron
- Time-resolved contrast-enhanced MRA
 - Appropriate plane, < 6 second TA if possible
 - Parallel imaging + echo-sharing to improve temporal resolution
- 3D T1 fat-suppressed GRE post, axial and/or coron
Typical Imaging Parameters

- Time-resolved MRA:
 - May use parallel imaging + echo sharing techniques to keep acquisition time down to ideally < 6 sec
 - 10-15 data sets acquired consecutively
 - Initial unenhanced mask used for subtractions
 - No timing run needed
 - Empiric 5-10 second delay useful to reduce number of unenhanced data sets but in very young patient with rapid circulation time start injection after mask obtained

Approach to Vascular Anomalies: Q1

Is this a high-flow lesion?

Time-resolved CE-MRA

(≤ 6 sec, opacifies with contrast)

- Flow voids
- GRE: flow-related enhancement
- Comparison with contra-lateral side
Approach to Vascular Anomalies: Q2

Is there a soft tissue mass?

High flow, no mass = Arteriovenous Malformation
- Network of abnormal communications between arteries and veins
- MR
 - High flow enlarged vascular channels
 - Flow voids
 - Typically no associated soft tissue mass

VASCULAR ANOMALY

Step 1: Assess FLOW

Step 2: Is there a mass?

Case 2
Approach to Vascular Anomalies: Q2

Is there a soft tissue mass?
If Yes, think proliferative anomaly rather than AVM

Diagnosis: Congenital Hemangioma
- Clinically and histologically distinct hemangiomas
- Fully developed at birth
- Undergo no further postnatal enlargement
- Two types (RICH>NICH):
 - Rapidly involuting congenital hemangioma (RICH)
 - Non-involuting congenital hemangioma (NICH)

Infantile Hemangioma
- Most common vascular tumor of infancy
- Rapid postnatal proliferation
- Variable stability
- Slow involution
- Segmental facial IH - consider PHACES association
 - P - posterior fossa hemangioma of infancy
 - H - arterial abnormalities (Ao)
 - A - congenital heart disease
 - C - eye anomalies
 - E - sternal/supraumbilical defects

Kaposiform Hemangioendothelioma
- Rare, aggressive vascular neoplasm
- Can be present at birth or develop postnatally
 - Typically ill-defined red-purple indurated plaque
- Predilection for trunk, extremities, retroperitoneum
- Often associated with Kasabach-Merritt phenomenon
 - Severe coagulopathy due to platelet trapping

Kaposiform Hemangioendothelioma
VASCULAR ANOMALY

- **Proliferative Anomalies**
 - Arterial Malformations

Approach to Vascular Anomalies: Q3

- **Q3: Could this be a malignancy?**
- **Potential mimickers of vascular anomalies**
 - Soft tissue sarcomas
 - Congenital infantile fibrosarcoma
 - Rhabdomyosarcoma
 - Malignant fibrous histiocytoma (MFH)
 - Synovial cell sarcoma
 - Angiosarcoma, hemangiosarcoma
 - Primitive neuroectodermal tumors
 - Neuroblastoma
 - Hemangiopericytoma
 - Fibromatosis/Myofibromatosis

Differentiating Vascular Anomalies from Malignant Masses

- Signal intensity, enhancement, and morphology
 - T1 signal intensity similar
 - T2 SI and contrast enhancement more uniform for hemangiomas
 - Lobulation, septation, and central low-signal intensity foci were all more common in hemangiomas
 - Presence of all three was specific
- Clinical context extremely important!
- Any doubt -> need tissue!

Teo et al (AJR 2000)

Congenital-Infantile Fibrosarcoma
Hemangiopericytoma

VASCULAR ANOMALY

Proliferative Anomalies
Arterial Malformations

SLOW flow Malformations

Step 1: Is there enhancement?

- Diffuse
- Septal

Lymphatic
Venous

Pediatric Vascular Imaging

2 y old with AVM (high flow), TA=3 sec
7 y old with venous malformation (low flow)

Approach to Vascular Anomalies: Q4

- Question Four: Okay, we’re left with a low-flow lesion. Is it primarily a venous malformation or lymphatic malformation?

- Enhancement pattern:
 - Septal vs diffuse progressive enhancement
MC asymptomatic vascular lesion

- Present at birth, may not be seen till years later
- Slow steady enlargement
- Superficial or deep, determines appearance
- Can be painful to the touch, vague congestive pain
- Cx: thrombosis/embolism, hemorrhage

Venous Malformations

Lymphatic Malformation

- Sponge-like collections of abnormal lymphatic channels/spaces
- Macrocystic vs microcystic
- Neck, axilla predilection
- Steadily increase in size
- Lymphangioma, cystic hygroma (poorer names)
Klippel Trenaunay Syndrome

- Classic triad:
 1. Slow-flow vascular malformations
 - Cutaneous capillary malformation
 - Underlying slow flow malformation
 2. Bone and/or soft tissue hypertrophy
 3. Venous varicosities/deep venous system anomalies

KT: Complications

- Skin/subcutaneous tissue:
 - Cellulitis
 - Chronic ulceration
 - Limb length discrepancy
 - Thrombophlebitis
 - Phleboliths
- Clotting abnormalities
 - Bleeding and/or thrombosis
 - Thromboembolism
 - Localized disseminated intravascular coagulation
 - Can lead to systemic coagulopathy
KT: Visceral Involvement

- Not uncommon
 - At NYU, pelvis gets imaged along with LE
 - Pelvic extension fairly common
 - Pay attention to GI/GU involvement
 - Can be source of life-threatening hemorrhage

Summary

- MR is the single best imaging test
- Lesions best diagnosed on basis of both clinical & imaging findings
- Remember the 4 key questions
 - High or low flow lesion?
 - Soft tissue mass?
 - Enhancement pattern?
 - Could this be a neoplasm?