PARAMAP: an Automated Imaging Analysis Tool for Quantitative CEST Molecular Imaging: Validation in vitro

J. Flament1, B. Marty1, S. Mériaux1, J. Valette1, C. Medina2, C. Robic3, M. Port4, F. Lethimonnier1, and F. Boumezbeur1

1NeuroSpin, I2IBM, Commissariat à l’Energie Atomique, Gif-sur-Yvette, France, 2Research Division, Guerbet, Roissy-Charles de Gaulle, France

Introduction

Recently, a new class of paramagnetic contrast agent has been developed for Chemical Exchange Saturation Transfer (PARACEST) magnetic resonance imaging [1-3]. Since visualizing CEST contrast requires two measurements with B_0 saturation applied on-resonance (at δ, frequency of the shifted bound water) and off-resonance (at $-\delta$), CEST imaging is sensitive to inhomogeneities in both B_0 and B_1 fields. Therefore, in order to generate quantitative CEST maps, it is important to elaborate correction algorithms to get rid of errors induced by B_0 and B_1 fields. In this study, we proposed to use a numerical simulation of the CEST contrast mechanism based on the Bloch equations modified for chemical exchange incorporating B_0 and B_1 dependencies [4]. The efficiency of our analysis tool was verified in vitro.

Materials and Methods

MRI acquisition. Experiments were realized on a 7 T small animal MRI scanner (Bruker, Ettlingen, Germany) using a bird-cage 3-cm-diameter 1H coil for acquisition and reception. CEST images were acquired with a RARE sequence (TE/TR=80/5500 ms; turbo factor 32) preceded by a CW saturation pulse being applied at ± 50 ppm ($T_{sp}=400 ms$, $B_{sat}=20 \mu T$). B_0 and B_1 maps were acquired separately using a GE sequence (TE=5, 7.5, 10, 15 ms; TR=300ms, flip angle of 30° and 60°). In vitro tests were performed on a 6-tubes phantom each containing $[\text{Eu}^{3+}]$DOTAMGly (Guerbet, Roissy, France; concentrations of 0.5, 1, 2.5, 5, 7.5, 10 mM) [3] embedded in a low-gelling point 4% agarose matrix.

Z-spectra Simulation and Image Analysis with PARAMAP. Our image analysis tool designed as PARAMAP is a Matlab (The MathWorks Inc., Natick, MA) based program aiming at correcting the B_0 and B_1 induced errors on the native CEST image (I_0) and B_1 induced errors on the native CEST image (I_0). Briefly, PARAMAP simulates for each pixel r a series of asymmetric Z-spectra using $B_0(r)$ and $B_1(r)$ values with the concentration C as a variable ($aMTR(C,r)$). The others parameters of the simulation (k_1, δ, T_1 and T_2 of both pools) are extracted from experimental Z-spectra of $[\text{Eu}^{3+}]$DOTAMGly (data not shown). The concentration map $C(r)$ is then calculated from the minimization of the cost function: $|I_0(r)-aMTR(C,r)|$.

Results and Discussion

As illustrated by the figure 1, field inhomogeneities manifest themselves strongly on the amplitude of the observed CEST effect for a given concentration. Therefore a 10% error on B_{sat} leads to a 4% over- or under-estimation. Similarly, a 100Hz frequency error leads to a 1% over- or under-estimation. In our experiment, B_0 and B_1 inhomogeneities were quite modest as illustrated (standard deviations: $\sigma_{\text{REF}}=21 \text{Hz}$ and $\sigma_{\text{REV}}=0.5 \mu T$). Yet without correction, the calculated CEST effect (Fig.2, open red dots) is quite different to the CEST effect expected (blue dots). If not corrected, discrepancies between the known and the estimated concentrations are on average of 0.8mM. The B_0 and B_1 corrections (green line) improve significantly the quantitativity of the established PARACEST concentration map with an averaged over-estimation of 0.3 mM (See Fig.3).

Conclusion

CEST agents are promising new contrast agents for MR molecular imaging since they allow to reach nanomolar sensitivity [5]. Yet, their susceptibility to parameters such as B_0, B_1 is a real issue to achieve truly quantitative CEST imaging. In this study, we validated in vitro PARAMAP, a home-made software aimed at correcting not only for B_0 and B_1 field inhomogeneities. Ultimately, quantitative PARACEST concentration maps were obtained within a reasonable margin. To move further toward in vivo quantitative CEST imaging, we are actually extending the simulation to a 4-site chemical exchange model similar to the one described by Li et al. [6].

The software will be available at: http://groups.google.com/group/paramap.

Acknowledgments

Grant sponsor: Isel/Innac French-German Project.

References

5. Terreno E. et al., CMMI 2008;3:38 6. Li AX et al., MRM 2008;60:1197