Selective Excitation of 13Cbicarbonate Following Injection of Hyperpolarized $^{1-13}$Cpyruvate Allows for Enhanced Signal

C. Harrison1,2, M. E. Merritt1, A. D. Sherry1,3, and C. Malloy1,4

1Advanced Imaging Research Center, UT Southwestern, Dallas, Texas, United States, 2Physics Department, UT Dallas, Richardson, Texas, United States, 3Department of Chemistry, UT Dallas, Richardson, Texas, United States, 4Veterans Affairs, North Texas Health Care System, Dallas, Texas, United States

Introduction

Hyperpolarized (HP) $^{1-13}$Cpyruvate has been shown to be metabolized to 13Cbicarbonate and other products both in vivo and in isolated perfused hearts. The appearance of a 13Cbicarbonate signal following an injection of hyperpolarized $^{1-13}$Cpyruvate reflects the activity of pyruvate dehydrogenase (PDH) in heart.15 In some metabolic circumstances, the 13Cbicarbonate signal is low and consequently the time-dependent evolution of this signal is difficult to characterize.15 Unlike traditional NMR spectroscopy, hyperpolarized substances lose magnetization with time due to two effects, application of a series of RF readout pulses to observe the signal as well as T_1 relaxation. However, frequency selective RF readout pulses could be used to detect 13Cbicarbonate without concomitant destruction of the “upstream” HP pyruvate signal. This in effect would conserve HP $^{1-13}$Cpyruvate for a longer period of time and increase the amount of HP 13Cbicarbonate detected on each scan.

Methods

All procedures were approved by the Institutional Animal Care and Use Committee. After general anesthesia, mouse hearts were rapidly excised and immediately perfused in Langendorff mode with Krebs-Henseleit bicarbonate buffer containing 5 mM glucose. Hearts were placed in the center of an 8 mm NMR tube positioned in a RF coil tuned to 13C in a Varian VNMRS 14.1 Tesla system. An 8 mL bolus of 4 mM hyperpolarized $^{1-13}$Cpyruvate was injected over a 25 s period directly above the aorta. 13C spectra were collected using a 90-degree flip angle repeated every 5 s. In a separate experiment, the process was repeated using a series of 90-degree Gaussian selective pulses centered on the 13Cbicarbonate peak at 160 ppm. Selective pulses were constructed using the standard “gauss” pulse shape included in the Varian VnmrJ software. Hyperpolarized samples were prepared using an Oxford HyperSense DNP system.

Results

The metabolic products of $^{1-13}$Cpyruvate, $^{1-13}$Clactate, $^{1-13}$Calanine, $^{1-13}$Cpyruvate-hydrate, and 13Cbicarbonate were all detected in hearts when using a series of non-selective 90-degree square pulses for observation but the SNR was poor for all metabolites (~2-14) other than pyruvate (Figure 1). The 13Cbicarbonate signal was detectible in only three spectra collected at 10 s, 15 s and 20 s. However, when a 90-degree Gaussian centered on the bicarbonate peak was used for readout, the SNR in the 13Cbicarbonate peak improved 8-fold and the signal was detected in 14 spectra ($t=10$-80 s).

Conclusions

The evolution of HP 13Cbicarbonate derived from $^{1-13}$Cpyruvate was observed in perfused mouse hearts with higher SNR when using a series of 90-degree frequency-selective Gaussian excitation pulses than when using standard 90-degree hard-pulses for excitation. The frequency selective pulse allows greater amounts of polarization to be sustained through the metabolic processes thereby maintaining polarization in 13Cbicarbonate for a longer time period. The increase in pyruvate signal seen when using the frequency-selective pulse centered at bicarbonate reflects the small flip angle, ~20 degrees, experienced at the pyruvate frequency. The HP pyruvate that is not destroyed by the RF pulsing remains in the coil and accumulates, generating a larger signal than the experimental protocol using a 90-degree pulse. Simulations show that the optimal flip angle using hard pulses depends upon delivery rate of the pyruvate and the repetition time as well as the rate of metabolic flux for each metabolite. While the pyruvate signal is improved, the ratio of bicarbonate to pyruvate has increased 2.5-fold, demonstrating that a selective pulse will generate greater intensity for an individual metabolite than the use of a hard-pulse with a smaller flip angle. Thus, each individual metabolite may be optimized with shaped pulses. Although 13CO$_2$ was not detected in these experiments, it should be possible to use a selective pulse to enhance the HP-CO$_2$ signal and thereby allow a measure pH in vivo.

REFERENCES
