Multiparametric MRI/MRS and gene expression profiling for monitoring docetaxel effects in MCF7 xenografts

E. M. Huse1, L. R. Jensen1, P. E. Goa2, S. Lundgren1,2, E. Andersen1, T. F. Batthen1, and I. S. Gribbestad1

1Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway, 2Department of Radiology, St. Olavs University Hospital, Trondheim, Norway, 3Department of Oncology, St. Olavs University Hospital, Trondheim, Norway, 4Department of Cancer Research and Molecular Medicine, NTNU, Trondheim, Norway

Introduction

Several methods are candidates for detecting early response in breast cancer patients undergoing chemotherapy. Docetaxel is an antitumor agent that induces polymerization of tubulin monomer leading to mitotic arrest in the cell cycle, causing apoptosis and cell death through mitotic catastrophe1,2. The purpose of this study was to evaluate the sensitivity of contrast enhanced MR imaging (DCE-MRI), diffusion MRI, in vivo MRS and gene expression profiling for detection of small effects early after docetaxel treatment.

Experimental

Xenografts were initiated by injecting MCF7 cells subcutaneously on the flanks of female BalbC/c nu/nu athymic mice. Tumor volume was measured with a digital calliper during growth. After five weeks, the animals were randomized into two groups, one treated with docetaxel (30 mg/kg, n=6) and controls given saline (15 ml/kg, n=5) intra peritoneal. Tumors were examined with DCE-MRI, ADC mapping and in vivo MR spectroscopy 1 day before and 1, 3 and 6 days after treatment using a BRUKER Biospec 7T scanner. Precontrast T1-values were measured using a series of T1-weighted spin-echo images with varying TR, followed by a DCE-MRI series of 200 images with 4.8 sec temporal resolution and a voxel size of 0.32x0.32x0.7 mm3. During the 10th repetition, a dose of 0.1 mmol/kg Gd-DTPA-BMA (Gadodiamide), was injected intravenously (4 sec). ADC maps were obtained from diffusion weighted MRI with 5 different b-values (0, 100, 300, 600, 1000 sec/mm2). In vivo MRS volumes were localized within the tumor (3x3x3 mm3) using the PRESS sequence (TE=20 msec, TR=3000 msec). All mice were sacrificed after the MR examination at day 6 and biopsies were stored in liquid N2. The signal enhancement curve for each voxel was analysed (MATLAB) to determine the relative signal intensity (RSI) for each voxel in the tumor region, Ktrans and ve based on the Tofts model2. Voxels with RSI lower than 80% at one minute post injection were excluded3. In vivo spectra were peak aligned, baseline offset corrected and normalized before multivariate Partial Least Squares (PLS) regression analyses. RNA was extracted and gene expression profiles were obtained by illumina array. Data were log(2) transformed and quantile normalised before multivariate PLS regression analyses.

Results and discussion

There was not observed any difference in tumor growth between the two groups during the 6 days after treatment, which might indicate a small treatment effect. The tumors had, in accordance with earlier findings3 a significant (p<0.03) change in median ADC 3 and 6 days after treatment compared to the control group and to values before treatment (Fig. 1b). No significant difference was found in the Ktrans, however, median ve was significant higher (p<0.04) in treated tumors at day 6 (Fig. 1a). The changes in ADC and ve could be a result of inhibition of cell proliferation and cell death in treated tumors. The lack of changes in Ktrans might be due to only indirect effects on tumor vasculature, induced by docetaxel. The in vivo MR spectra showed a slightly lower level of total choline signal in docetaxel treated tumours compared to controls (Fig. 1e). Both for in vivo MRS and gene expression data, treated tumours and controls were clearly separated in different clusters by PLS analysis (Fig. 1f), suggesting a genetic and metabolic change due to docetaxel treatment.

Conclusion

Our findings shows that multiparametric MRI, based on DCE-MRI and diffusion MRI, in vivo MRS and gene expression profiles can monitor small changes during breast treatment response caused by docetaxel in MCF-7 xenografts.