Hemodynamic Response Imaging for the Assessment of Anti-Angiogenic Treatment Response

Y. Edrei1,2, E. Gross1, N. Corchia1, E. Pikarsky1, S. Ben-Sasson2, and R. Abramovitch1,3
1The Goldyne Savad Inst. for Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel, 2MRI/MRS lab HBRC, Hadassah Hebrew University Medical Center, Jerusalem, Israel, 3Pediatric Surgery, Hadassah Hebrew University Medical Center, Jerusalem, Israel, 4Department of Pathology, Hadassah Hebrew University Medical Center, Jerusalem, Israel, 5Experimental Medicine & Cancer research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel

Background & Aims Tumor response to therapy is usually assessed by measurements of tumor size using morphological imaging techniques. However, tumor shrinkage can be observed only after weeks or even months, or even, may not occur at all, despite a positive response. Thus, the ability to detect early effects of tumor therapeutic response could facilitate decisions regarding therapy continuation or replacement. Novel approaches directed to the complex interactions between a tumor and its microenvironment in the angiogenic process will hopefully strengthen the therapeutic armamentarium against cancer. Since antiangiogenic therapy may not lead to substantial tumor mass reduction, conventional tumor size measurements may be insensitive. Therefore, identification of new noninvasive monitoring techniques for assessing tumor response is a major necessity in this field. Recently, we demonstrated the feasibility of Hemodynamic Response Imaging (HRI), an fMRI method combined with hypercapnia and hyperoxia for monitoring changes in liver perfusion and hemodynamics1,2. In the present study, we aimed to improve therapeutic response assessment by evaluating the therapeutic effects of a novel anti-angiogenic therapy on colorectal liver metastases (CRLM) by HRI. This method allowed us to obtain functional parameters that complement the anatomical information.

Methods Animals: CB6F1 mice underwent splenic injection with CT-26 colon cancer cells to generate liver metastases. Mice were treated by daily i.p. injections of “Hamsa”, a novel treatment based on the combination of low-dose cytotoxic agent, COX1 inhibitor, a histamine type 2 (H2) receptor antagonist and hypoxia-like inducing agent, or inert vehicle alone. Treatment was started on the day of tumor appearance in T2W images (day 15±2). Tumor progression was monitored by MRI twice a week. Animals were sacrificed at the end of the experiment and their livers were harvested for histology. MRI: Experiments were performed on a 4.7T Bruker Biospec spectrometer using a 3.5 cm bird cage coil. Hepatic volumetric assessment was acquired by serial coronal and axial T2W SE images (TR/TE=250/18ms). Tumor assessment was done using T2W fast SE images (TR/TE=2000/40ms). Changes in hepatic hemodynamics were evaluated from T2W maps (Fig. 2C, Fig.3). Indeed, histological analysis demonstrated that until the time of tumours’ outburst, HRI maps values were similar to those of the control-treated mice (Fig.2A,B, Fig.3). While later, there was a significant decrease in vessel reactivity to the gases and the lesion borders became bluer, resulting in uncharacteristic HRI maps (Fig.2C, Fig.3). Indeed, histological analysis confirmed the HRI results, revealing undefined tumor borders and a change in tumor growth characteristics (replacement mode) in the Hamsa-treated mice (Fig.4B). Since vessel reactivity in the entire liver was attenuated, we treated additional control mice with Hamsa (without CRLM) and analyzed their hemodynamic profile. Indeed, we also found alterations in the HRI maps in these mice (Fig.2D), that were further confirmed by the appearance of small necrotic foci in the histological slides and alterations in the liver vasculature as revealed by CD31 immunostaining.

Conclusions In this study, we have shown that “Hamsa” treatment reduced tumor growth and thus prolonged mice survival. However, it induced a change in the CRLM growth morphology which was reflected in HRI maps. Thus, HRI utilization offers a new noninvasive method for monitoring anti-angiogenic therapy response and may facilitate detection of tumor deterioration.

References 1Barash, H; Gross, E; Matot, I; Edrei, Y; Tsarfaty, G; Spira, G; Vlodavsky, I; Galun, E; Abramovitch, R: Radiology; 243(3), 2007; 2Barash, H; Gross, E; Edrei, Y; Spira, G; Vlodavsky, I; Galun, E; Matot, I; Abramovitch, R: Hepatology; 3Edrei, Y; Galun, E; Gross, E; Pikarsky, E; Abramovitch, R: #1752, ISMRM[2006];