Proton Diffusion Weighted and Sodium MRI of Growing Intrahepatic and Subcutaneous Hepatocellular Carcinoma

A. Babsky1, S. Ju1, S. Bennett1, B. Atthe1, B. George2, G. McLennan1, and N. Bansal1
1Radiology, Indiana University, Indianapolis, Indiana, United States

Introduction
Hepatocellular carcinoma (HCC) growth is associated with structural and metabolic transformations that can be monitored by non-invasive 23Na and 1H MRI. Changes in water apparent diffusion coefficient (ADC) and total tissue Na+ reflect mostly alterations in relative extracellular space (ECS) in tumor tissue, while changes in intracellular Na+ reflect mostly alterations in relative extracellular space (ECS) in tumor tissue, while changes in intracellular Na+ reflect mostly changes in ECS and intracellular Na+ concentration. ADC and total tissue Na+ are influenced by motion artifact, which can be challenging due to respiratory, cardiac, and other physiologic motion. To reduce motion artifact, the water ADC in rodent models has been usually studied using subcutaneous (SC) tumor models, and thus the absolute ADC values of IH HCC and their post-treatment changes remain unclear. In this study, in growing IH and SC HCC rat tumors and surrounding normal tissues, we examined the relationship between 1) water ADC measured by diffusion-weighted (DW) 1H MRI, 2) total tissue Na+ measured by single-quantum (SQ) 23Na MRI, and 3) intracellular Na+ measured by triple-quantum-filtered (TQF) 23Na MRI.

Methods
For the IH HCC model, one million N1S1 cells were inoculated in the left lateral lobe of the liver; for the SC HCC model, ten million cells were inoculated under the skin on the thigh. MR images were acquired with a 7 T magnet (Magnex Scientific, Abingdon, UK). A multi-slice DW-1H imaging sequence with the following imaging parameters was used: 1,100 ms repetition time (TR), 21 ms echo time (TE), 256 x 128 data points over a 80 x 80 field of view (FOV), 0.5 mm slice thickness, 1.5 mm slice gap, and b = 0, 256, 945, and 1,679 s/mm2. Respiratory gating was used to minimize the motion effect on water ADC in IH HCC. 23Na images of IH HCC were obtained with a loop-gap volume resonator (inner diameter = 60 mm, depth = 25 mm) tuned to 105 MHz. A 3D gradient-echo 23Na imaging sequence with the following parameter was used: ~ 240 µs non-selective excitation RF pulse, 50 ms TR, 4.6 ms TE, 64 x 64 x 16 data points over a 60 x 60 x 36 mm FOV, and 10 min total data collection time. TQF 23Na MRI was performed using the same parameters as for SQ 23Na MRI, except a TR of 100 ms and a data size of 64 x 32 x 8 was used. 1H and 23Na MRI of SC tumors and nearby tissue were obtained with a 30 mm diameter dual-tuned loop-gap volume coil. DW-1H, SQ 23Na MRI of SC tumors were acquired employing the same parameters as for IH HCC, except a 60 x 60 mm FOV was used. Total data collection time for a set of DW 1H MRI, SQ 23Na MRI, and TQF 23Na MRI was 15, 7, and 45 min, respectively.

Results
The tumor doubling time was 3.9 days for IH HCC and 11.2 days for SC HCC (Fig. 1). Seven days after cell inoculation, the water ADC in IH HCC (1.4 ± 0.1 x 10-3 mm2/s, p < 0.05) was significantly higher compared to the adjacent normal liver (1.0 ± 0.1 x 10-3 mm2/s, p < 0.05). This difference was consistent despite a small decrease in the ADC of IH HCC from day 7 through day 28. The motion artifacts in DW MRI were only partially avoided by respiratory gating. Fig. 2 shows that 1H images of IH tumor can be moderately (A) or intensively (B) blurred by motion at non-zero b-values, in contrast to SC tumors (C). The water ADC of SC HCC increased from 0.63 ± 0.01 x 10-3 mm2/s at day 14 to 0.72 ± 0.04 x 10-3 mm2/s at day 21, and 0.79 ± 0.06 x 10-3 mm2/s at day 28 (p < 0.05 vs. 14 day value). The water ADC of SC HCC was lower (p < 0.01) compared to the IH HCC by 53%, 37%, and 24% on days 14, 21, and 28, respectively. Growth of IH HCC was associated with increases in both SQ and TQF 23Na signal intensity (SI). At day 28, mean SQ 23Na SI from the IH HCC increased to 2.5 ± 0.6 times the day 7 value (p < 0.05), while the SI from the surrounding liver tissue remained unchanged. The changes in TQF 23Na were similar to SQ 23Na but more profound. On day 21, the mean TQF 23Na SI increased to 2.1 ± 0.5 times the day 7 value (p < 0.05), and on day 28 to 2.7 ± 0.5 times the day 7 value (p < 0.05). SC HCC tumors also showed similar changes in SQ and TQF 23Na MRI SI. On day 28, the mean SQ 23Na SI increased to 1.5 ± 0.1 times the day 14 value (Fig. 3). On day 21, the mean TQF 23Na SI increased to 1.7 ± 0.4 times the day 14 value (p < 0.05) and on day 28 to 1.8 ± 0.4 times the day 14 value (p < 0.05).

Discussion
Our previous data show that the increase in SQ and TQF 23Na MR SI of SC-implanted RIF-1 and 9L tumors are caused by increases in ECS and intracellular Na+ concentration, and not by changes in 23Na relaxation times \cite{1, 2}. Histological analysis of IH HCC showed that its growth is associated with increased in necrosis and inflammation, which leads to increases in ECS and SQ 23Na SI. The observed increase in TQF 23Na SI may result from progressive hypoxia with tumor growth. Hypoxia shifts the tumor metabolism from oxidative phosphorylation to glycolysis, which may reduce ATP production. The decrease in energy status may decrease the activity of Na+/K+-ATPase and increase intracellular Na+ concentration. Thus, the observed increase in SQ 23Na in growing HCC reflects an increase in ECS, and the increase in TQF 23Na represents an increase in intracellular Na+ concentration.

Conclusion
Water ADC of HCC depends on tumor location and is greatly affected by physiological motion. SQ and TQF 23Na MRI are not affected by motion, and show increases in total and intracellular Na+ with untreated tumor growth in both IH and SC tumors. SQ and TQF 23Na MRI techniques are more reliable compared to water ADC measurements for hepatic tumor studies because of their insensitivity to motion.

References