Quantification of renal diffusion-weighted images using a bi-exponential model

J. L. Zhang¹, E. E. Sigmund¹, H. Rusinek¹, H. Chandarana¹, Q. Chen¹, P. Storey¹, L. Bokacheva¹, and V. S. Lee¹
¹Radiology, New York University, New York, NY, United States

Introduction

Although well-studied in applications in the brain (1), the perfusion contribution to diffusion signal decay has not been quantified in renal applications. This effect, sometimes called “intravoxel incoherent motion (IVIM)” contributes substantially to overall signal decay in kidney, and it has been attributed to renal capillary perfusion (2). Since in kidney a large fraction (~20%) of water is filtered into tubules, we hypothesize that tubular fluid flow also contributes to IVIM. If confirmed, quantification of IVIM could lead to non-invasive assessment of renal vascular and tubular functions. In this study, we acquired volunteer DWI data with multiple diffusion weightings and multiple repetitions, and used a bi-exponential model for data analysis, with the aim of accurately quantifying the diffusion and IVIM effect in various tissues of kidney.

Methods

Two healthy volunteers (39 and 43 years) were scanned on a 3T MRI (Tim Trio, Siemens) with a spine coil and body array coil combination. Coronal single-shot echo planar DWI sequence were acquired using: 5 slices; slice thickness 6 mm; FOV 345x410 mm; matrix 162x192; TR/TE 2000/78 ms, 3-Scan Trace mode, parallel imaging (iPat) = 2. Diffusion imaging using 27 b values from 0 to 1300 s/mm² with a 50s/mm² step was performed with nine (Case 1) and two (Case 2) repetitions. Each repetition took about 2.5 minutes. The volunteers were asked to breathe shallowly. Images were co-registered using cross correlation method to correct for respiratory motion. Registered repetitions were then averaged prior to analysis.

On the unweighted images (S₀) the kidney was partitioned into renal cortex and medulla. On one kidney an incidental cyst was also analyzed as a separate region. For each tissue regional signals were fitted by

\[S = S₀ \times [(1-F_p) \times \exp(-b \times ADC_p) + F_p \times \exp(-b \times ADC_c)] \]

where ADCₚ represents pure diffusion coefficient, Fₚ volume fraction of high flow voxels (vessels, tubules), and ADCₑ denotes the pseudo-diffusion coefficient due to perfusion (2). We also considered a derived parameter, Pₚ = Fₚ × ADCₑ, which is physically analogous to renal plasma flow (RPF) as derived from contrast-enhanced perfusion imaging (1). Fitting of Eq [1] was performed over the range (0≤b≤800 s/mm²) to ensure sufficiently high SNR. Root means square residue (RMS) expressed as a percentage of S₀ was calculated for each fit.

To generate parameter maps, monoexponential fitting was first performed, and for the voxels with residual error larger than noise level, Eq [1] was fitted, producing maps for S₀, ADCₑ, Fₚ, ADCₚ and Pₚ.

Results / Discussion

Table 1: Parameter values by mono- and bi-exponential fittings in ROI analysis

<table>
<thead>
<tr>
<th></th>
<th>Mono-exp</th>
<th>Bi-exponential</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ADCₑ (x10⁻³ mm²/s)</td>
<td>ADCₑ (x10⁻³ mm²/s)</td>
</tr>
<tr>
<td>Cortex Case1</td>
<td>2.2±0.1</td>
<td>1.5±0.1</td>
</tr>
<tr>
<td>Cortex Case2</td>
<td>2.2±0.1</td>
<td>1.5±0.1</td>
</tr>
<tr>
<td>Medulla Case1</td>
<td>2.1±0.1</td>
<td>1.5±0.1</td>
</tr>
<tr>
<td>Medulla Case2</td>
<td>2.0±0.1</td>
<td>1.4±0.1</td>
</tr>
<tr>
<td>Cyst Case1</td>
<td>2.3±0.1</td>
<td>1.9±0.1</td>
</tr>
</tbody>
</table>

Figure 1 shows the fitting curves for the tissue signals of Case 1 using Eq. [1]. Across the kidney, ADCₑ and Fₚ showed similar patterns (Table 1, Fig.2). ADCₑ was comparable for cortex and medulla, while significantly higher in the cyst. ADCₑ difference between renal parenchyma and cyst (0.4x10⁻³ mm²/s) was more than two-fold larger than for ADCₑ (−0.15x10⁻³ mm²/s). Fₚ in cortex was higher than in medulla, and Fₚ in cyst was the lowest. ADCₑ showed consistent values in the two cases in the cortex but more variable in the medulla. Similar behavior is seen in the perfusion product Pₚ.

Compared to ADCₑ, the perfusion-related parameters Fₚ and ADCₚ suffered from lower precision for voxel-wise analysis (Fig. 2). This is partially ameliorated by forming the perfusion product Pₚ, whose map shows a smoother texture.

Lack of contrast for ADCₑ between cortex and medulla suggests that the commonly observed ADCₑ contrast between cortex and medulla is in fact due to IVIM effect. Fₚ, which corresponds to volume fraction of voxels exhibiting high water flow, was estimated as 32%–38% for cortex and 31%–32% for medulla. These values are much higher than 5%–15% observed with other perfusion-based measurements. Hence, tubular flow and water reabsorption may contribute substantially to the IVIM effect. It follows that the variability in ADCₑ may be due to the differences in tubular factors such as hydration status.

Conclusions

Quantitative assessment of renal diffusion and IVIM effects in diffusion-weighted imaging was achieved using a free-breathing multi-repetition sequence and bi-exponential analysis. ADCₑ contrast between cortex and medulla is predominantly due to the IVIM effect, and the IVIM effect (so-called “perfusion”) likely contains a significant tubular contribution. Further work is needed to separate perfusion and tubular components.

References