A combined whole body diffusion- and continuous table movement STIR-protocol for the assessment of fever of unknown origin (FUO): first results

S. Weckbach1, H. J. Michaely1, D. J. Dinter2, and S. O. Schoenberg3

1Department of Clinical Radiology and Nuclear Medicine, University Hospital Mannheim, Mannheim, Germany, 2Department of Clinical Radiology and Nuclear Medicine, University Hospital Mannheim, Mannheim, Germany

Purpose: Patients with fever of unknown origin (FUO) [1] are usually examined with many different modalities, such as conventional radiography of the lungs, CT of the abdomen and scintigraphy, however, in more than 50% without detection of the fever generating focus. Leucocyte scintigraphy is considered as the diagnostic standard [2], however, it is unspecific. 18F-FDG-PET [3] has been evaluated in some studies, and also MRI of the lungs and vessel system has been performed in single studies to rule out pulmonary infection [4] and vasculitis [5], however, there are no data on whole body (WB)-MRI using diffusion weighted imaging (DWI) and STIR imaging so far. Therefore the purpose of this study was to evaluate WB-MRI using DWI [6,7,8] and continuous table movement (CTM) [9] STIR sequences as a new specific modality for the etiologic workup of FUO without radiation exposure and with less technical effort compared to scintigraphy.

Material and Methods: 6 patients (4 males, 2 females, mean age 49 years) with FUO (fever > 38.3°C for > 3 weeks of which the cause is not found despite adequate diagnostics or fever during neutropenia < 3 weeks duration) were examined at 3 T (Siemens Magnetom Trio) using a combined protocol with coronal WB diffusion-weighted sequences (EPI-SpinEcho, 2.0 x 2.0 x 4.0 mm³, TR 3900ms, TE 78ms, PAT 2), coronal WB CTM STIR sequences (2.0 x 1.0 x 6.0mm³, TR 4960ms, TE 105ms, PAT2) and axial contrast-enhanced T1-weighted GRE (VIBE)-sequences as reference. Additionally, standard axial FLAIR- and T1-weighted sequences of the brain were performed before and after contrast administration. The DWI and CTM STIR-images were evaluated for image quality and evaluability (scale 1-4: excellent, good, moderate, poor image quality and evaluability). The presence and location of fever causing foci was assessed by two readers in consensus.

Results: Mean imaging time was 75 min. Image quality and evaluability were excellent for the CTM STIR-sequence in 3 patients, good in 3 patients; for the WB diffusion sequence image quality and evaluability were good in 3 patients and moderate in 3 patients. In 5 patients pyogenic foci as shown by the contrast-enhanced VIBE-sequence were detected by both, the DWI and the STIR-sequence, in 1 patient no pyogenic lesion was seen by all three sequences. Foci were 1 septic arthritis of the shoulder, 1 small thigh abscess, 1 soft tissue infection of the ankle, 1 pneumonia and 1 esophagitis. Diagnosis was assured by clinical follow up in 2 patients and biopsy in 3 patients.

a) DWI and b) CTM STIR-sequence showing septic arthritis with surrounding soft tissue infection in the left shoulder region which is confirmed in the c) contrast-enhanced axial VIBE-sequence

Conclusion: The presented first results using WB-DWI and CTM STIR-sequences are promising for the workup of FUO. The combined WB-DWI and CTM STIR protocol might replace leucocyte scintigraphy as diagnostic standard of reference in the future.

References: