Interrogation of short T2 components in sclerotic bone metastases with Ultra Short TE MRI

C. Messiou1, D. J. Collins1, M. D. Robson2, V. A. Morgan1, and N. M. deSouza1

1Cancer Research UK Clinical Magnetic Resonance Research Group, Institute of Cancer Research & Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom, 2OCMR, Oxford University, Oxford, Oxfordshire, United Kingdom

Introduction Ultra short TE (UTE) MR employs half RF excitations followed by radial filling of k space to reduce TEs to a µs range. This allows detection of signal from very short T2 tissue that previously returned no signal on conventional MR sequences1. Our aim was to investigate the feasibility of UTE imaging of short T2 components in sclerotic bone metastases.

Methods Sagittal UTE lumbar spine was performed in 4 healthy volunteers and 7 patients with known sclerotic metastatic bone disease on a Siemens Avanto 1.5T; (TR 500ms; TEs 0.07,4.7,9.4ms ; FOV 400cm, matrix 512, 2 averages; flip angle 85º; BW 540Hz, fat saturation; 4mm slice thickness).

Image optimisation: Signal acquisition was maximised by adding a body coil over the area of interest. Inaccurately spatially encoded information which occurs due to non-linearity of gradients was minimised by switching off coil elements at the extremity of the FOV. The number of radial lines was 960 and FOV was 800mm, which moves artefacts away from the region of interest. The increased number of k-space lines increases time for image acquisition over the scan with artefact. Further measures to decrease artefacts were achieved by selecting the TIM “triple mode” which is often found to be beneficial with radial scanning. Total imaging time 8 minutes. Signal as a function of TE was investigated.

Results Radial artifact was reduced in optimised images (Fig 1) which enabled clearer visualization of metastases than on T1-W images (Fig 2). In these lesions signal change was greatest at TE<4.7ms. The UTE sequence also showed definite increase in signal in lesions responding to treatment (as evidenced by serum biomarkers) when no observable response was detectable on standard MR (Fig 4).

Discussion and Conclusion We have optimised UTE MRI of the spine to return signal from short T2 components in sclerotic bone metastases. Careful coil selection and large FOV and matrix size can overcome artefacts from non-linearity of gradients although this can result in a time penalty. UTE has potential for quantitative assessment of sclerotic bone metastases but further measurements between 0.07 and 4.7ms are necessary to optimise TEs and remove effects of long T2 components. An alternative fat saturation technique should also be investigated to minimise the potential for saturation of broad band width short T2 tissues.


Acknowledgement: This work was supported by Cancer Research UK grant number C1060/A5117 and also NHS funding to the NIHR Biomedical Research Centre.