Ultra-short TE-enhanced T₂[*] mapping of cartilage

A. Williams¹, Y. Qian¹, D. Bear¹, F. Boada², and C. Chu¹

¹Cartilage Restoration Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States, ²MR Research Center, Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States

Background This work explores the utility of ultra-short echo time (UTE) enhanced T₂[*] mapping to non-destructively probe articular cartilage structure, particularly the integrity of the collagen extra-cellular matrix. T₂[*] measurement built on UTE sequences (e.g., UTE-enhanced T₂[*] mapping) is sensitive to changes in short-T₂ signal (T₂ < 10 ms) and may provide improved sensitivity to subtle matrix alterations that are not well-captured by standard T₂ sequences^{1,2}. Optical coherence tomography (OCT) is capable of non-destructively imaging articular cartilage at microscopic resolutions to detect structural changes within grossly normal appearing articular cartilage³⁻⁸. We hypothesize that high-resolution UTE-enhanced T₂[*] maps will discriminate between normal and abnormal collagen architecture as observed by OCT and polarized light microscopy (PLM).

Methods Ten osteochondral specimens from human tibial plateaus were collected post-mortem and from total knee replacement surgery, and were stored at -20°C before use. Explants were mounted on an acrylic plate with MRI lucent fiducial markers to allow precise spatial registration of study locations across imaging modalities. Quantitative T₂ and UTE-enhanced T₂[*] images were acquired on a clinical 3T MRI scanner (MAGNETOM Trio TIM 3T, Siemens Medical Solutions, Erlangen, Germany) using standard extremity coils (Invivo Inc., Gainesville, Florida, USA). A multislice coronal 2-D T₂ FSE sequence was acquired with seven echo images (TEs) ranging from 10-80 ms, repetition time (TR) 1800 ms, BW 326 Hz/pix, and 4 averages. The 20 2-D slices were collected with 417 x 417 µm in-plane resolution and 2 mm section thickness. Total T₂ scan time was 12 minutes. UTE-enhanced T₂[*] mapping images were acquired using a home-developed fast 3D UTE sequence named as AWSOS (acquisition-weighted stack of spirals)³. Eleven echo images, TE ranging 0.5 – 40 ms, were collected with resolution 391 x 391 µm in-plane, and 2 mm section thickness; FA/TR = 30°/100 ms. Scan time was 4.27 minutes per TE-image. T₂ values were lower and show a correlated to greater degree of cartilage degeneration³.

Results Osteochondral cores from human tibial plateaus were evaluated by microscopic OCT and histology and compared to corresponding regions of interest (ROIs) from T₂ and UTE-enhanced T₂[*] maps. Lower values were seen by T₂[*] compared to standard T₂ in the same section of tissue, and the two metrics exhibited different laminar patterns. UTE-enhanced imaging permitted T₂[*] mapping in the deep radial zone, a zone not detected by standard T₂. Zonal stratifications observed on T₂[*] maps were similar to those observed within the collagen matrix arrangement seen by PLM. Focal T₂[*] lesions within the transitional zone corresponded to matrix derangement observed with PLM. OCT detected surface disruptions that could not be resolved by MRI and provided evidence for structural integrity and/or deficiency consistent with collagen organization seen by PLM. Example images from two ROIs on the same tibial plateau are shown in Figures 1-3.

Discussion Although standard T₂ is sensitive to water content and fragmentation of the collagen fibers occurring in cartilage degeneration¹, long echo times (usually>10ms) used in standard T₂ prevent detection of short T₂ components, resulting in decreased overall sensitivity to subtle matrix alterations. UTE-enhanced T₂[*] mapping permits detection of short T₂ components such as those found in the deep radial zone. Results of this work suggest that T₂[*] mapping is also sensitive to focal derangements of the collagen matrix that are not obvious by standard T₂ mapping. Microscopic OCT and histology examinations of tissue sections with grossly different T₂[*] appearances demonstrate that UTE-enhanced T₂[*] mapping differentiates between normal and abnormal collagen architectures.

Acknowledgments Funding support provided by the National Institutes of Health (RO1 AR052784, AR052784-04S1, and P60 AR054731). We wish to thank Elise Pringle for her technical assistance.