Bone marrow edema-like lesions and cartilage degeneration in osteoarthritis using 3T MR T1rho quantification: longitudinal assessment

J. Zhao1, R. Bolbos1, S. Majumdar2, T. Link3, and X. Li4

1Radiology Department, University of California San Francisco, San Francisco, California, United States, 2Radiology Department, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China, People's Republic of

INTRODUCTION
Bone marrow edema-like lesions (BMEL) are defined as areas of high signal intensity in T1-weighted, fat-saturated magnetic resonance (MR) images or in short inversion time inversion-recovery images. These lesions are present in knee osteoarthritis (OA) and acute knee injuries. While MR findings of BMEL are common, our knowledge concerning their natural history and significance is limited. In OA, BMEL has been associated with the severity and progression and pain in OA (1,2). The goal of this study was to quantitatively assess the spatial relationship between bone marrow edema-like lesions (BMEL) and the associated cartilage in knee OA using \(T_\rho \) quantification at 3T MRI, cross-sectionally and longitudinally with one-year follow-up.

METHODS
Twenty-three patients (10 male, 13 female, mean age 51.8 ± 11.2 years) with clinically diagnosed knee OA underwent MRI at 3T (Signa, GE Medical Systems). Among them, twelve patients (5 male, 7 female, mean age 51.5 ± 12.1 years) were performed 3T MRI at one year follow-up. The MRI protocol included sagittal intermediate-weighted fat-saturated FSE images (matrix 512x256, FOV = 16 cm slice thickness = 2 mm), sagittal 3D water excitation high-resolution SPGR images (matrix 512x512, FOV = 16 cm slice thickness = 1mm) and sagittal 3D \(T_\rho \) quantitation sequences based on MAPSS sequence previously developed in our lab (3) (matrix 256x128, slice thickness = 4 mm, time of spin lock (TSL) = 0/10/40/80 ms, spin lock frequency = 500Hz). Radiographs were also obtained and scored based on Kellgren-Lawrence (KL) scales (number of patients = 10, 10, 2, 1 for KL = 1, 2, 3, 4 respectively).

BMEL were semi-automatically segmented in FSE images and the 3D volumes of BMEL were calculated in both baseline and follow-up patients. The signal intensity (SI) increase of BMEL versus normal bone marrow (NBM) was calculated as: (\(S_{BMEL} - S_{NBM} \)/\(S_{NBM} \))×100%. Cartilage degeneration was graded using modified Whole-Organ MRI Score (WORMS) (4) in each compartment as well as in cartilage overlying BMELs in the FSE images. Cartilage was segmented semi-automatically in SPGR images using an in-house developed software. Five compartments were defined: patellar, lateral/medial femoral condyle (LFC/MFC), lateral/medial tibia condyle (LT/MT). 3D cartilage contour was overlaid to aligned \(T_\rho \) maps. \(T_\rho \) values were calculated from each defined compartments, as well as from cartilage overlying BMEL. Cartilage degeneration percentage was used to evaluate cartilage overlying BMEL (OC) and surrounding cartilage (SC) change between follow up and baseline. Cartilage degeneration percentage was calculated using \(T_\rho \) value of OC and SC basing on: (follow up - baseline)/ baseline.

Signed rank test was used to compare the cartilage degeneration percentage of BMEL overlying and surrounding cartilage. A paired t-test was used to compare the \(T_\rho \) and clinical grading of BMEL-overlying cartilage and surrounding cartilage between baseline and follow up, respectively. A Student’s-t-test was used to compare BMEL volume and SI increase between baseline and follow up. The Pearson correlation coefficients were calculated between BMEL-overlying cartilage \(T_\rho \) and BMEL volume, and between BMEL-overlying cartilage \(T_\rho \) and BMEL SI increase, respectively.

RESULTS
At baseline, 25 BMELs were found in 16 out of 23 patients (volume 2.88 ± 3.21 cm³; SI increase 265% ± 110%): 11 in patella, 8 in LFC, 3 in MFC, 2 in MT and one in LT. For 12 patients who had both baseline and follow up exams, 14 BMELs were found in 10 patients at both baseline and follow-up. No significant differences were found in volume and SI increase of BMEL between baseline and follow up. For volume, 6 BMELs increased (change more than 5%) in follow up, 5 decreased, and 3 remained stable. For SI increase, 9 BMELs increased (change more than 5%) in follow up, while 4 decreased, 1 remained stable.

At baseline, the overall \(T_\rho \) values were significantly increased in patients with BMEL compared with those without BMEL (42.5 ± 3.8 ms vs 39.6 ± 1.1 ms, \(P = 0.012 \)). At follow-up, no comparison was made for overall \(T_\rho \) values between patients with and without BMEL due to small number of patients without BMEL (n=2). At both baseline and follow-up, both \(T_\rho \) values and WORMS grading were significantly elevated in OC compared to SC (Table 1). From baseline to one-year follow up, \(T_\rho \) values in OC increased 7.8% ± 5.0%, which is significantly higher than that in SC (3.1% ± 4.0%, \(P=0.05 \)). No significant differences in WORMS grading change from baseline to follow-up were found in SC vs. OC. Increased \(T_\rho \) values in OC were correlated with increased SI of BMEL in both baseline and follow-up (\(R = 0.55, P = 0.005 \) for baseline, \(R = 0.54, P = 0.005 \) for follow-up), but not correlated with BMEL volume (\(R = 0.1, P = 0.63 \)).

Table 1 \(T_\rho \) values and WORMS grading of cartilage overlying (OC) and surrounding (SC) BMEL at baseline and 1-year follow-up in OA patients.

<table>
<thead>
<tr>
<th></th>
<th>(T_\rho) values (ms)</th>
<th>WORMS grading</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OC</td>
<td>SC</td>
</tr>
<tr>
<td>Baseline</td>
<td>46.46±3.09</td>
<td>41.37±3.12</td>
</tr>
<tr>
<td>Follow-up</td>
<td>48.63±2.90</td>
<td>43.03±2.36</td>
</tr>
</tbody>
</table>

DISCUSSION
Patients with BMEL showed overall higher \(T_\rho \) values in cartilage compared with those who had no BMEL, suggesting BMEL may be correlated with disease severity of OA. Furthermore, in patients with BMEL, both \(T_\rho \) values and WORMS grading were elevated in cartilage overlying BMEL, suggesting a local spatial correlation between BMEL and more advanced cartilage degeneration. In this study, we found the degree of \(T_\rho \) elevation in BMEL-overlying cartilage is correlated with signal intensity increase of BMEL, but not with the volume of BMEL. At one-year follow up, cartilage overlying BMEL showed higher \(T_\rho \) value increase compared with surrounding cartilage, suggesting BMEL is indicative of accelerated cartilage degeneration. Interestingly, no such difference was found using WORMS scoring. This result suggests that quantitative cartilage imaging, such as \(T_\rho \), may be a more sensitive indicator of cartilage degeneration than semi-quantitative scoring systems.

REFERENCES

Acknowledgement: NIH RO1 AR46905, NIH K25 AR053633 and a fellowship grant from the third hospital of Hebei Medical University, China.