
D. Ben-Bashat 1, H. Ben-Ami1, M. Artzi1, D. Blumenthal2, F. Bokstein1, O. Aizenstein1, Y. Edrei1, B. Corn1, and R. Abramovitch6
1The Wohl institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel, 2Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel, 3Neuro-Oncology Unit, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel, 4Radiology Department, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel, 5Goldyne Savad Institute of Gene Therapy, Hadassah University Medical Center, Jerusalem, Israel, 6Institute of Radiotherapy, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel

Background / Aims: One of the main characteristics of malignant phenotype of a lesion is the formation of new and abnormal blood vessels (angiogenesis). The close correlation between angiogenic processes and poorer prognosis have led, during recent years, to new strategies utilizing combinations of antiangiogenic and chemotherapies. Yet, methods for monitoring vasculature changes under such therapies are limited. We have previously presented a novel fMRI method (hemodynamic response imaging - HRI), using hyperoxia and hypercapnia for the detection of vascular functionality and maturation, both in animal models as well as in human brain tumors. This method has been shown to facilitate detection of mature vessels resistant to anti-angiogenic therapy in animal models, and to differentiate between various tissue types with high sensitivity in humans. The aim of this study was to evaluate the sensitivity of HRI to assess therapy response in patients with glioblastoma multiforme (GBM) during the course of the antiangiogenic therapy.

Methods: Three patients with recurrent GBM treated with a combination of anti VEGF and cytotoxic chemotherapy were scanned several times during the course of therapy with conventional MRI methods and the proposed method -HRI, at intervals of 2-8 weeks (total of 10 MR examinations). MRI was performed on a 3T GE magnet. For the HRI method, gradient-echo EPI sequence was used with TR=5000msec and TE=35msec. Two separated scans were performed, each using a block design paradigm with inhalation of either 95%O2 + 5%CO2 or 95%air + 5%CO2 and 100% air. Statistical maps of the signal intensity changes were analyzed and realigned to the contrast enhanced 3D images using Matlab package SPM5.

Results: Figures 1a-b show representative HRI-O2 (a) and HRI-CO2 (b) maps, superimposed on the contrast enhanced images, from a 54 year-old patient with recurrent GBM. Blood vessels are present within the enhanced tissue, as shown by response to O2. However, the lack of response to CO2, in the enhanced tissue, indicates the absence of smooth muscle cells on these vessels suggestive of new immature blood vessels.

Figure 2 demonstrates results from a 74 year-old patient obtained at: baseline (a,b) and two weeks after the beginning of antiangiogenic therapy (c,d). HRI-O2 (a,c) and HRI-CO2 (b,d) maps are superimposed on the contrast enhanced images. At baseline scan (before therapy), HRI demonstrates areas that respond to O2 (2a) within the enhanced lesion and show no response to CO2 (2b). After two weeks of therapy, partial response, (MacDonald criteria), was detected using T1 weighted images post-Gadolinium correlating with the patient’s clinical improvement. Using the HRI method, a response to CO2 became visible within the enhanced tumor area (2d). This vascular response to CO2 might indicate the existence of smooth muscle coverage on these blood vessels, demonstrating a process of "vessel normalization" as a result of antiangiogenic therapy. Such mechanism has been previously proposed to occur with anti-VEGF therapies. Similar results were obtained in the other two patients, demonstrating "normalization" of blood vessels during the first 2-8 weeks of therapy, correlating with the clinical improvement of these patients.

Conclusion: HRI is a novel non-invasive method for vascular assessment which provides additional information regarding vessel permeability and maturation. This method shows high sensitivity for evaluating therapy response and might have added value in clinical management especially in anti-angiogenic therapies.