Measurements of glial metabolic fluxes with 13C-acetate using positron emission and 1H(13C) NMR spectroscopy

B. Lanz¹, L. Xin², M. T. Wyss², B. Weber², A. Buck², and R. Gruetter¹,²

¹Laboratory for functional and metabolic imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. ²PET Center, University Hospital Zurich, Division of Nuclear Medicine, Zurich, Switzerland. ³Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland. ⁴Departments of Radiology, Universities of Lausanne and Geneva, Lausanne and Geneva, Switzerland

Introduction:
Nuclear imaging and NMR are two ways to study the brain metabolism. Acetate, which is taken up only by the glia, in combination with 13C MRS and two-compartment modeling allows the determination of the Krebs cycle fluxes of the glia and the neurons as well as their interaction through the neurotransmission cycle [1]. NMR is able to distinguish different labeled chemical groups, while methods based on radioactive tracers allows a highly sensitive detection and a better time resolution, however without chemical differentiation. In this study, we report the results obtained by using an adapted NMR acetate metabolism model to analyse beta-probe data following $[1-^{13}]$C-acetate infusion in rats and compare it to the results of $[^{1}$H(13C)] NMR spectroscopy following $[2-^{13}]$C-acetate infusion.

Materials and methods:
Brain acetate infusion experiments were modeled using a two compartments model [3] and a simplification of the Krebs cycle modeling recently proposed [4]. The same brain metabolism model was applied to beta-probe and MRS acetate infusion experiments, using respectively radioactive $[1-^{13}]$C-acetate and stable $[2-^{13}]$C-acetate as precursor. In the first case, the signal measured with a beta-probe inserted in the brain [5,6] represents the time evolution of the total amount of labeled metabolites (glutamine and glutamate at position C5 or C1). Total blood radioactivity was continuously recorded using an arterio-venous shunt and a coincidence counter [7] to obtain the arterial input function, following the bolus infusion. All the measurements were corrected for radioactive decay. A portion of the measured signal is reflecting the blood radioactivity due to blood partial volume in the brain (around 5% of the volume in rats). Since with bolus injection the blood radioactivity was slowly varying and negligible after 2 minutes, we omitted the first 2 minutes for the fit. In the second case, $[^{1}$H(13C)] NMR spectroscopy was used to measure 13C labeling of glutamate and glutamine at the positions C4 and C3. The infusion protocol was adjusted to obtain a constant 13C plasma acetate FE. The model was adapted to the labeled carbon positions of the infused acetate. As shown in the past [4] for single-compartment models, the use of the composite flux $V_{gt} = V_x + V_{nt}$ is expedient to describe the turnover of the first labeled position of glutamate (and thus of glutamine). This still holds in the two-compartment model for glial and neuronal TCA cycles. Thus, in the $[2-^{13}]$C-acetate case, the apparent glial Krebs-cycle rate (V_{gt}) and the neuronal one (V_{nt}) as well as the apparent neurotransmission flux V_{nt} were fitted using the signal of glutamine and glutamate labeled at position 4 and 3. In addition to previous models, we found that the separate measurement of glutamate and glutamine C3 allowed to assess the glutamine Krebs-cycle flux V_{nt}. In the $[1-^{13}]$C-acetate case, the total tissue radioactivity curve is dominated by the signal of the first labeled position C5 of glial glutamate and glutamine essentially reflecting V_{gt} and V_{nt}. The small FE of the neuronal pools makes the estimation of neuronal V_{nt} impossible. So, V_{gt} and V_{nt} were fitted, while the V_{nt} was fixed to the average value found in the NMR study.

Results and Discussion:
1. $[^{1}$H(13C)] MRS data were averaged from 5 rats and the isotropic enrichment turnover curves fitted for glutamate and glutamine C4 and C3 result in values of glial $V_{gt} = 0.061±0.003 \ \mu$mol/g/min, neuronal $V_{nt} = 0.21±0.02 \ \mu$mol/g/min and Vnt = 0.16±0.01 \ \mu$mol/g/min. A preliminary fit of the C3 positions enabled an insight in the Krebs cycle modeling recently proposed [4]. The same brain metabolism model was applied to beta-probe MRS acetate infusion experiments, using radioactive [1-13C]-acetate infusion, the model was fitted successfully to the different tissue activity curves of 6 animals, using the model shown in figure 1. Another metabolite entering in consideration when using radioactive 13C measurements is the production of 13C02. Based on the high diffusivity of 13C02 across the blood-brain barrier, the model predicts small amount of 13C02 below 5% of the total tissue activity after the two first minutes. The initial peak is essentially due to the direct degradation of acetate into 13C02 through the TCA cycle (i.e. 13C02 flowing directly from acetate to 13CO2 without passing through the glutamate pools). The height of this initial peak is thus dependent on the value of the vgl as relative to 13CO2.

We conclude that the two-compartment model presented here is able to fit data of two intrinsically different measurement modalities of brain metabolism whereas $[^{1}$H(13C)] MRS following $[2-^{13}]$C-acetate infusion is able to give a precise insight of the respective activity of the glial and neuronal mitochondrial fluxes as well as of the apparent neurotransmission. 13C PET presents a faster alternative to the glial Krebs cycle measurement, potentially applicable to human PET imaging.

References:

Acknowledgments: Supported by Centre d’Imagerie BioMédicale (CIBM) of the UNIL, UNIGE, HUG, CHUV, EPFL and the Leenaards and Jeanet Foundations; SNF grant No. 3100A0-116220.

Fig.1: Model used for $[2-^{13}]$C acetate infusion (NMR study). A similar model [2] was used for 13C studies, with adapted label positions (i.e. glutamate and glutamine C5 followed by C1)

Fig.2: Fits of the MRS data averaged on 5 animals, using the model shown in figure 1.

Fig.3: Typical fit of beta-probe data, using a similar model than in figure 1, adapted to the different labeled carbon positions.