Comparison of Myelin Water Fraction in Cross-Regularized T1-Relaxograms of Normal White Matter at 3T and 7T and of Normal-Appearing White Matter at 3T

C. Labadie1, D. V. Ott1, T. H. Jochimsen1, J-H. Lee4, and H. E. Möller4,2
1Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany, 2Faculty of Physics and Earth Science, University of Leipzig, Leipzig, Germany, 3Biomedical Engineering, University of Cincinnati, Ohio, United States

Introduction: The continuous distribution analysis (inverse Laplace transform, ILT) of inversion recovery (IR) human brain data acquired at 4T with a low flip angle (5°), short TE (ca. 8 ms) and geometrically spaced Ts yields a T1-relaxogram that includes a small fraction of water relaxing with a short T1 (ca. 100-200 ms) [1]. The histogram of this water fraction exhibits a bimodal distribution corresponding to GM (ca. 5%) and WM (ca. 12%), which was attributed to the myelin water fraction (MWF) trapped between myelin bilayers [2]. At long TE (56 ms) and ultra short Ts (5 ms), Prantner et al. [3] detected a small (3-4%) rapidly relaxing component (4.4 Hz) in rat gray matter due to cross-relaxation of water with immobile protons. The use of relatively long adiabatic pulses in human studies at high field prohibits such detection at ultra short TI. To minimize the effects of cross-relaxation at short TE (7 ms), we have suggested performing an ILT based estimation of the inversion efficiency prior to the analysis [4]. In this study, we explore the MWF in IR brain data from a volunteer at 3T and 7T and in the NAWM of an MS-patient at 3T.

Methods: PURR sequence [5]: Look-Locker IR sequence implemented under Siemens VB15-IDEA with a non-selective adiabatic pulse (SBHtNs), 32 FLASH 5° read-outs. TE 7ms, 150Hz/Px, on a 3T Siemens TimTrio (12-channel coil with adaptive combination) and a 7T Siemens scanner (8-channel coil). Processing: individual channel raw-data (twix) were reconstructed (ODIN, od1n.sourceforge.net [6]) and pixel-wised phased (average phase of the 4 first and 4 last Ts). The real part of each channel was linearly combined and the IR curve of each pixel submitted to a cross-regularized ILT [7] with 32 TI grids logarithmically spaced between 70ms and 7sec using CONTIN [8] after estimation of the inversion efficiency (smoothed with a 5mm FWHM). Volunteer: 21-yr female. Patient: 23-yr female with mild relapsing-remitting MS (several supratentorial plaques, one infratentorial lesion, CSF positively tested for oligoclonal bands, EDSS score 2.0, 5 yr since initial diagnosis, 4 yr Interferon beta-1a Avonex treatment, in last 2 years slow progression with at least 3 new minor lesions).

Results & Discussion: The MWF map was computed pixel-by-pixel by integrating the area of the small T1 peak at ca. 105 ms (see T1-relaxograms in Fig. 1c) divided by the total water relaxogram. The average MWF in white matter increased from 3T (0.073 ± 0.014) to 7T (0.132 ± 0.013). Although the T1 of the main peak, corresponding to water in axons, glial cells or extra-cellular, increased from 3T (1.114 ± 0.293 sec) to 7T (1.493 ± 0.177 sec), that of the myelin water remained relatively unchanged at 3T (110.0 ± 15.8 ms) and 7T (105.5 ± 7.2 ms). Assuming that the T1 of gray matter pixels, in which the MWF was near null, is representative of the T1 of axons in white matter in absence of water exchange with myelin, a two-site-exchange fit was attempted and returned a residence time of water in myelin of 666.4 ± 369.5 ms and a fraction of myelin water of 0.158 ± 0.104. This apparent slow exchange is in agreement with earlier neutron diffraction studies of highly myelinated nerves in which the kinetics of hydrogen-deuterium exchange at 6°C ran 666.4 ± 369.5 ms and a fraction of myelin water of 0.158 ± 0.104. This apparent slow exchange is in agreement with previous results at 4T and the present work suggests that the detection of the MWF is facilitated at higher fields.

Fig. 1: a) Map of the myelin water fraction (MWF) and corresponding MWF histogram of a healthy subject at 3T, single 112x128 slice, 1.6x1.6x5 mm3, geometrically spaced Look-Locker T1/T2/T1p/T2p/TR=16.46ms/50.46ms/717.46ms/7.99sec/15sec, b) MWF map of the same subject at 7T, c) white matter T1-relaxograms at 3T and 7T corresponding to the sum of pixels with higher MWF (peak highlighted in yellow in the a) and b) histograms), d) same slice as in b) at 7T but acquired with a 224x256 matrix, 0.8x0.8x5 mm3, GRAPPA with acceleration factor 4 and 32 reference lines (GRAPPA weights were computed in the last TI image with ODIN).

Fig. 2: a) PRRR image T1 250 ms at 3T of an MS patient, single 96x128 slice, 1.7x1.7x5 mm3, T1/T2/T1p/T2p/TR=17ms/31ms/719ms/9sec/12sec. b) T1-relaxogram of lesion #1 (blue curve) and of lesion #2 (green curve) and of white matter, c) MWF map, d) MWF histogram with a slightly increased MWF at ca. 0.0416.