Potential Application of Hyaluronic Acid in MR Imaging

W. Zhu1, and D. Artemov1

1Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States

\section*{Introduction.} The up-regulation of CD44 in breast cancer cells is generally correlated with poor prognosis1. CD44 also has been identified as a putative breast cancer stem-like cell marker2. Therefore, CD44 is an important breast cancer therapeutic target. We hypothesized that as a major CD44 ligand, hyaluronic acid (hyaluronan or HA) can be used as a carrier for MRI probes such as gadolinium, offering a simple and direct approach to access the CD44 status of breast cancer cells. HA-gadolinium conjugate may also be used as a blood pool contrast agent since HA is a highly water-soluble and non-immunogenic polysaccharide with molecular weight ranging from 5 to 20,000 kD.

\section*{Materials and Methods.} HA (MW = 35 kD) was conjugated to BODIPY through a carboxylic reactive BODIPY® FL hydrazide. To produce an MRI agent, HA was reacted with ethylenediamine (EDA) at the carboxyl groups to produce a linker to conjugate to diethylenetriaminepentaaetic acid (DTPA). HA-EDA-DTPA was chelated to gadolinium by reacting with gadolinium chloride. The final product was purified by ultrafiltration.

MDA-MB-231 cells were treated with 60 µg/ml HA-BODIPY for different length of time and observed with fluorescence microscope. For \textit{in-vivo} mouse MRA studies, images were acquired with a 3D FLASH sequence (TE/TR = 2.5/8ms, flip angle 25 degree, FOV 48x28x28 mm, matrix size 256x80x80, NA = 8). HA-EDA-DTPA-Gd was injected through an intravenous catheter at the dose of 200mg/kg.

\section*{Results and Discussions.} About 85% of MDA-MB-231 cells are CD44 positive3. We found that MDA-MB-231 cells showed strong binding to HA-BODIPY at 1 hour, 2 hour, and 3 hour intervals as shown in Figure 1. No specific binding was observed in CD44 negative MCF-7 breast cancer cells3. The gadolinium content of our HA-EDA-DTPA-Gd as determined by ICP-MS was 13.9%, which corresponded to about 90% of Gd conjugation rate at the HA carboxyl sites. HA-Gd conjugate displayed a favorable blood clearance profile with extended circulation time, Figure 2. The images showed that HA-Gd is mainly cleared through kidney and bladder with no observable accumulation in other organs.

\section*{Conclusion.} Preliminary data demonstrated the potential of HA as a targeting moiety to CD44 positive cancer cells. HA-EDA-DTPA-Gd conjugate also displayed a favorable blood clearance profile with extended circulation time. As such, the highly water-soluble, non-toxic, biocompatible, and non-immunogenic HA offered great advantage as a blood pool contrast agent.

\section*{Acknowledgements.} The support from NIH P50 CA103175 and Dr. Zaver Bhujwalla is greatly appreciated. We would also like to thank the gracious experimental support from Dr. Yoshinori Kato.