Towards Direct B1 Based Local SAR Estimation

M. A. Cloos 1, and G. Bonmassar 2

1 Athinoula A. Martins Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, M.A., United States

Introduction: Safety regulations specified by the International Electrotechnical Commission [1] require the local specific absorption rate (SAR) in the human head to remain under 10W/Kg averaged over 10g of volume for more than 10 min. The distributions of electrical conductivities, of volumetric mass densities and of electric field amplitudes are essential for the local SAR estimation. Numerical simulations [2] such as the Finite Difference Time Domain (FDTD) must be employed to estimate local SAR distributions. However, it may take up to several days to estimate the electric fields in complex loads such as in anatomically accurate human heads/ bodies. Furthermore, a patient-specific head/body model maybe required for estimation of local SAR in multichannel parallel transmission MRI [3,4]. Conversely, we propose to estimate the local SAR by means of closed forms derived directly from the Maxwell’s equation and without requiring any human head/body model. In previous work [5], local conductivity (£σSm -1) and permittivity (£ = 6.85 10 -12 CN 2 m -2) were computed using iterative simulations on RF-excitation (B1) images based on the Method of Moments (CONCEPT II, technical university of Hamburg-Harburg). Instead of using such cumbersome iterative solution, we propose to estimate the local dielectric properties (£, ϵ) in a single step by applying differential operators directly on the B1 images. Furthermore, we present a closed form of the axial electric field (|Ez|) also calculated directly from the B1 images, that will allow us to estimate the local SAR based on the assumption that in various geometries [6] the axial-component of the electric field is dominant. The proposed real-time local SAR estimation will be valuable for a patient-specific solution needed in advanced MRI systems such as the parallel transmit.

Theory: From Maxwell’s equations in combination with Ohms law the following relation (eq. 1) can be found using harmonic analysis (i = \sqrt{-1}).

\[- \nabla^2 H = \varrho \mu_0 \omega H + \varrho \mu_0 \omega H \]

1) For human tissues the permeability µ is approximately equal to the permeability of free space (\(\mu_0 = 4\pi \times 10^{-7}\) N A -2), allowing eq. 2 to be solved in terms of B1 for \(\varepsilon\) (eq. 3), and \(\sigma\) (eq. 4). Where \(\Re(\varepsilon)\), and \(\Im(\varepsilon)\) denote the real and imaginary part of \(\varepsilon\), respectively. The |Ez| component of the electric field can be obtained directly from eq. 5 by substituting the found solutions for \(\sigma\) and \(\varepsilon\).

\[- \nabla^2 B_1^z = \mu_0 \sigma \omega B_1^z\]

2) Using reciprocity theory the analogue of eq. 1 is found (eq. 2) for the excitation (B1*) and receive (B1) field [7].

\[\varepsilon_r = -\Re\left(\frac{\nabla^2 B_1^{z*}}{\omega B_1^z}\right)\]

3) \(|E_z| = \left|\frac{\nabla \cdot (iB_1^{z*} - iB_1^z) - \nabla \cdot (B_1^{z*} + B_1^z)}{\mu \sigma - i\mu_0 \omega}\right|\]

4) \[\sigma = \Im\left(\frac{\nabla^2 B_1^{z*}}{\mu_0 B_1^z}\right)\]

5) \[\text{SAR} = \frac{1}{2\rho} \left|\nabla \cdot \left(\frac{\nabla^2 B_1^{z*}}{\mu B_1^z}\right)\right| \left|\nabla \cdot \left(\frac{\nabla^2 B_1^{z*} - iB_1^z}{\mu B_1^z}\right)\right| \left|\nabla \cdot \left(\frac{\nabla^2 B_1^{z*} + B_1^z}{i\nabla^2 B_1^z}\right)\right| + \delta\]

Using the found expression for |Ez| the local SAR can be estimated (eq. 6) under the assumption that |Ez| dominates the electric field.

Methods: Simulated B1 images of the human head were obtained using FDTD (XFDTD software, Remcom Inc, State Collage, PA, USA). For this purpose a 49 anatomica structures 1 mm resolution MRI based head model [8] was used. Simulations were preformed at 300Mhz (\(\omega = 2\pi \times 3 \times 10^{8}\)) using an idealized 16-element quadrature-birdcage head coil where each element was independently fed by a 1A 50 Hz current. Instead of using such cumbersome iterative solution, we propose to estimate the local SAR in a single step by applying differential operators directly on the B1 images. Furthermore, we present a closed form of the axial electric field (|Ez|) also calculated directly from the B1 images, that will allow us to estimate the local SAR based on the assumption that in various geometries [6] the axial-component of the electric field is dominant. The proposed real-time local SAR estimation will be valuable for a patient-specific solution needed in advanced MRI systems such as the parallel transmit.

Results: Based on the simulated B1* (fig. a) the local SAR (fig. b) was calculated using eq. 6 assuming \(\delta = 0\). Results were subsequently compared to the simulated Ez approximation (fig. c), and the exact solution (fig. d). Difference between simulated and calculated local SAR based on the B1* image shows a Gaussian distribution, Mean±SD: -0.2±0.1% and -0.3±0.1% (fig. e), for the [Ez] approximation and [E] solution, respectively.

Discussion: We showed how local SAR information can be derived directly form B1 images using a closed form solution based on the Maxwell’s equations. In addition to provide patient specific head/body models with complete dielectric constants, this method has other potential applications such as in the detection of tumors [9] and other deceases based on the measured dielectric properties. This fast and straightforward closed form solution allows patient-specific local SAR calculations to be made in real-time. Further work is necessary to extend the proposed method to regions where the dominant Ez approximation does not hold.

Acknowledgements: We thank L.M. Angelone, V. Alagappan, K. Setsompop, and D.K. Sodickson for the useful discussions during this study.

Figure: B1* image and direct SAR estimation. a) Transverse slice of the B1* field in the human head model. b) The unaveraged SAR calculated from the simulated B1* image. c) The unaveraged SAR based on the dielectric properties from the head model and |Ez| calculated from the simulated B1* image. d) The actual unaveraged SAR as provided by the simulation. e) The difference between the unaveraged SAR calculated from the B1 relative to the simulated SAR based on |Ez|, and [E]