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Introduction 
It has been shown recently that it is possible to achieve superior image quality in Cartesian autocalibrated parallel imaging by reformulating image reconstruction as a 
nonlinear inversion problem [1,2]. Using this formulation, it is possible to jointly optimize both the estimated coil sensitivities and the reconstructed image. This leads 
to a better elimination of undersampling artifacts, due to improved estimations of the coil sensitivity profiles. This approach can also be generalized to arbitrary non-
Cartesian sampling patterns. In this work, the performance of nonlinear inversion is investigated for radial sampling, which has the advantage of inherent oversampling 
of the central part of k-space. This eliminates the need to collect additional reference lines for the estimation of the coil sensitivities, and enables the use of even higher 
acceleration factors. 
 
Theory 
We pose the autocalibrated parallel imaging problem as a nonlinear operator equation F(x) = g, where 
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maps the true image u and the sensitivities c1,…,cN of the N receiver coils to the set of acquired k-space coefficients g = (g1,…gN) of each coil. Here, the dot denotes 
pointwise multiplication in image space, and K is the sampling operator determined by the selected trajectory. This nonlinear equation can be solved by an Iteratively 
Regularized Gauß-Newton (IRGN) method, i.e., computing in each step k the minimum δx of 
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for given αk>0 and an initial guess x0, and then setting xk+1 := xk + δx, αk+1 := q·αk with 0<q<1. Here, F'(xk) is the Jacobian of F evaluated at xk, and W is an operator 
such that the high Fourier coefficients of the sensitivity components of x are penalized. Due to the bilinear structure of F, the action of F'(xk) (and its adjoint) can be 
explicitly calculated using the non-uniform FFT (and its inverse) [3], so that the corresponding normal equations can be efficiently solved with a conjugate gradient 
method. It is crucial for numerical stability of the method to replace x with Wx and F by FW-1 instead of applying W in every iteration, adapting the derivatives 
accordingly. In this way, instead of applying the weighting operator (which is ill-posed), we iteratively invert the inverse operator, which acts as a regularization 
method. Since any solution of the bilinear equation (1) can only be unique up to reciprocal factors in image and sensitivities, we remove the remaining bias by 
multiplying the reconstructed image with the sum of squares of the reconstructed 
sensitivities. 
 
Methods and Results 
We acquired a k-space data set of the brain of a healthy volunteer using a radial 
gradient echo sequence on a clinical 3T scanner with a 4 channel head coil. Sequence 
parameters were TR=142ms, TE=2.2ms, FA=60°, Matrix Size (x,y)=256×256, in-
plane resolution=0.9mm×0.9mm, slice thickness=5mm. 32 radial projections were 
acquired for each slice. This corresponds to an undersampling factor of 
approximately 12 in comparison to a fully sampled radial data set (256·π/2 
projections). Raw data was exported and reconstructed offline using a Matlab (The 
MathWorks, Natick, MA) implementation of the proposed algorithm. To make the 
parameter choice more robust, we set the parameters in relation to the norm of the 
residual nk in step k. Specifically, we choose α0 such that n1 ≈ 0.75·n0, and q such that 
n2 ≈ 1/3·n1. We stop the iteration in step k if nk > 1/2·nk-1. Images were also 
reconstructed with a conventional regridding algorithm, followed by a Sum of 
Squares (SOS) combination of the individual coil images u·c1,…,u·cN. A comparison 
of both reconstructions for a single slice can be seen in Fig.1. 
 
Discussion 
With the non-Cartesian IRGN method, it is possible to use very high acceleration factors, which allows the acquisition of data sets with high spatial and temporal 
resolution. Undersampling artifacts, which significantly deteriorated image quality in the conventional regridding reconstruction, were removed efficiently. While no 
acceleration in z direction was used in this study, the proposed method can be extended to arbitrary 3D sampling patterns by appropriate definition of the sampling 
operator K. This has the potential for even higher acceleration factors. It should be noted that our heuristic stopping criterion may not give optimal image quality for 
different types of data sets. Future work will include the investigation of optimal stopping criteria. Additionally, we are currently investigating possible improvements 
by incorporating a Total Variation penalty on the reconstructed image. With the current Matlab implementation, the reconstruction time for a single slice of this k-space 
dataset was approximately 3 minutes on a modern office PC. It is possible to significantly accelerate the reconstruction with a more optimized implementation (e.g. by 
using the high potential of parallel computing on graphics hardware). 
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Fig. 1: Human brain scan, 256x256 matrix, 32 radial projections 
(a) Conventional regridding reconstruction and SOS coil combination 
(b) Proposed non-Cartesian IRGN method 
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