Effect of RF Pulse Duration on T2 Quantification Using Multi-Echo Spin Echo Sequences

O. Bieli1, and K. Scheffler1

1Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland

Introduction. Besides spin density, relaxation times (T1,2) are the most basic intrinsic tissue parameters in MR imaging. Typically, a Carr-Purcell-Meiboom-Gill (CPMG) pulse train is used as a gold standard for T2 quantification of tissues or pathologies of interest [1]. It is thus not surprising that considerable effort has been undertaken to account and correct for all the practical issues related to T2 quantification using multi-echo spin echo (SE) type of sequences, such as nonideal slice profiles, partial volume effects, Gibb’s ringing and many others [2]. In this work, we will show that finite RF effects may lead to a general overestimation of the true T2 value of tissues by 5-10% using multi-echo SE sequences.

Theory & Methods. In principle, T2 mapping is very simple and bases on the acquisition of SE from a long train of 180° pulses after a 90° excitation. For simplicity, we consider the most basic CPGM type of experiment to assess finite RF effects on T2 quantification: Simple projections along readout (RO) are used (no phase encoding) and hard pulse excitation is used to circumvent issues related to nonideal slice profiles (including spoiler gradients around the 180°-refocussing pulses). The prototype of such a sequence is shown in Fig. 1a. During RF refocusing, any orthogonal transverse magnetization flips from its initial position through a longitudinal state into its final opposite transverse state (see Fig. 1b). It is quite evident that during this longitudinal alignment, no transverse relaxation takes place which in turn should affect derived T2 values (see Fig. 1c). Since the transverse magnetization is dephased prior to any 180° pulse (to avoid contributions from longitudinal states), only 64% of the transverse states undergo such a longitudinal alignment (see Fig. 1a, RO). This leads to the following modification to TE to yield an effective TE_{\text{eff}} which takes into account reduced transverse relaxation effects during RF refocusing:

\[TE_{\text{eff}} = T_E x_{\text{eff}} - 0.64 \cdot \zeta \cdot T_{RF} \Rightarrow T_{2_{\text{SEQ}}} = T_{2_{\text{eff}}} \cdot \left(1 - 0.64 \cdot \zeta \cdot T_{RF} / T_{E x_{\text{eff}}}
ight)^{-1} \]

[1]

Measurements were performed on a 1.5T clinical scanner (Siemens Espree) and on two aqueous (as to nonideal slice profiles, partial volume effects, Gibb’s ringing and many others [2]). In this work, we will show that finite RF effects may lead to a general overestimation of the true T2 value of tissues by 5-10% using multi-echo SE sequences.

Results & Discussion. Simulations (see Fig. 2) revealed the expected deviations (i.e. overestimations) of multi-echo SE T2 measurements from the true T2 with increasing RF pulse echo-time portions (T_{RF}/TE). Interestingly, T2 deviations strongly depend on T1/T2: For similar T2 ~T1 (dotted line), T_{RF} has a negligible effect on the assessed T2, whereas for T2 << T1, a strong dependence on T_{RF}/TE is found (solid line). For hard pulses, \(\zeta = 0.4 \) is found, indicating that during 40% of the refocusing time, no transverse relaxation takes place. As a result, Eq. [1] is modified to yield

\[T_{2_{\text{SEQ}}} \approx T_{2_{\text{eff}}} \cdot \left(1 - 0.25 \cdot (1 - T_{1}/T_{1}) \cdot T_{RF} / T_{E x_{\text{eff}}}
ight)^{-1} \]

[2]

The mean longitudinal alignment of the magnetization during RF refocusing (\(\zeta_{\text{RF}} \)) thus leads to a reduction in the effective echo-spacing and thus to an overestimation of the true T2 for species with T2<<T1. Typically, echo-spacing is short (TE < 10 ms), since T2 times in tissues are low (T2 ~ 60 ms), whereas 180° pulses are long (T_{RF} ~ 3 – 5 ms) from SAR limitations. As a result, T_{RF}/TE portions can be quite substantial (~ 0.5). Results and analysis will be extended to slice selective refocusing.

Conclusion. Care has to be taken in the analysis of multi-echo SE images for absolute T2 quantification. Finite RF pulse effects may result in similar inaccuracies as other well-known issues, such as nonideal slice profiles.