Reduced Peak Power Dualband VSS Pulse Design

A. B. Kerr1, P. E. Larson2, D. B. Vigneron3, and J. M. Pauly1

1Electrical Engineering, Stanford University, Stanford, CA, United States, 2Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States

Introduction: Spectroscopic imaging based on conventional 3D PRESS localization is improved by using very selective suppression (VSS) pulses for outer volume suppression [1]. Cosine-modulated VSS pulses can be used to simultaneously suppress two parallel bands [2] but doubles the required peak RF amplitude. This abstract presents an efficient method for designing a dualband VSS pulse that requires only a $\sqrt{2}$ increase in peak RF amplitude.

Methods: RF saturation pulses with nonlinear phase profiles have reduced peak RF amplitudes. These phase profiles can be specified analytically as for quadratic-phase VSS pulses [3,4], or can be arrived at by manipulating the roots of the $B_{\delta}(z)$ polynomial [5,6] that describes the slice profile in an SLR-based RF design [7]. We will use the root-manipulation approach for calculation efficiency and also because the quadratic-phase profile will degrade to approximately linear phase in the dualband case.

Figure 1a shows the profile of a $B_{\delta}(z)$ polynomial designed to excite a single band using a minimum-phase FIR filter design method based on convex optimization and spectral factorization [8]. The filter has a ratio of passband to stopband using a minimum-phase FIR filter design method based on convex optimization. The filter has a ratio of passband to stopband using a minimum-phase FIR filter design method based on convex optimization and spectral factorization [8].

The peak amplitude increase over a single-band reduced peak power VSS pulse is only 41%, which can be exploited to suppress more complex geometries. Zeros unchanged from the reference $B_{\delta}(z)$ are circles while flipped roots are crosses.

Figure 1b demonstrates the excellent saturation achieved using the RF pulse. Though the peak ripple is approximately 3-4% compared to a design of 2%. The increased ripple is likely due to RF system nonlinearity.

Discussion: An efficient root-manipulation based approach was developed to design reduced peak power dualband VSS pulses for clinical MRSI studies. The peak amplitude increase over a single-band reduced peak power VSS pulse is only 41%, which can be exploited to suppress more complex geometries or increase B_{δ} and T_{ref} insensitivity. The design method is appropriate for incorporation during scan prescription to allow for variable specification of band thickness, separation and tip-angle.

[Acknowledgement: This work partly supported by NIH R01 EB007588 & CA111291]