MULTI-PHASE 3D ANGIOGRAPHY ROADMAPS FOR REAL-TIME MRI-GUIDED PROCEDURES

H. Saybasili1,2, A. Z. Faranesh1, C. E. Saikus1, C. Ozturk2, R. J. Lederman1, and M. A. Guttman1

1Translational Medicine Branch National Heart Lung Blood Institute, National Institutes of Health, Bethesda, MD, United States, 2Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey

Introduction: One challenge of real-time MRI guided vascular intervention is to distinguish vascular structures to insure the safety and efficac y of the procedure [1]. Real-time sequences often focus on increasing data acquisition speed by sacrificing spatial resolution and overall image quality. High resolution or time-resolved features of (non real-time) MRI are reduced during real-time imaging. The operator therefore may have difficulty uniquely identifying related vascular structures such as arteries, veins, and even biliary structures. In this work, we present a new software system that dynamically creates colored Maximum Intensity Projections (MIPs) in real-time using pre-acquired magnetic resonance angiography (MRA) and magnetic resonance cholangiopancreatography (MRCP) data, and displays them interactively within our in-house developed real-time system described in [2] by alpha-blending. In this way, conventional MRI advantages can be brought back into real-time MRI applications. With our system, the physician can easily visualize the anatomic location and orientation of devices in relation to important anatomic structures.

Methods: Time-resolved MRA, MRCP and real-time images of a pig were acquired using a short, wide bore Siemens Espree 1.5 T MRI scanner (Siemens Medical Solutions, Erlangen, Germany). During a breath hold, the MRA was acquired with a 3D flash sequence with the following parameters: TR = 2.79 ms, TE = 1.23 ms, flip angle = 24°, bandwidth = 820 Hz/pixel, FOV = 325x325 mm. For MRCP imaging, a respiratory gated fast spin echo sequence (HASTE) was used with the following parameters: TR = 2773.39 ms, TE = 620 ms, flip angle = 180°, bandwidth = 220 Hz/pixel, FOV = 102x102 mm. Real-time SSFP images were acquired with TR = 3.01ms, flip angle = 45°, bandwidth = 800 Hz/pixel, FOV = 340x255 mm with acquisition matrix of 192x108. 18 receiver coils were used during real-time imaging, and a hybrid TGRAPPA (HTGRAPPA) algorithm [3] was employed as a parallel imaging technique. MRA and MRCP data were exported as DICOM images and loaded into our in-house developed real-time reconstruction environment for rendering the appropriate MIPs. These MIPs were displayed interactively, alpha-blended with real-time multi-slice images on our reconstruction computer.

Results: The MIPs and real-time images are displayed in 3D as shown in Figure 1 and Figure 2. The HTGRAPPA algorithm was deployed for parallel imaging with acceleration factors of 2 and 3. Displaying each MIP with a different color makes it possible to differentiate hepatic arterial, biliary and venous structures.

Discussion: Our software allows us to render and to display dynamically 3D MIPs with different colors in real-time, in an interactive manner by alpha-blending them with real-time reconstructed multi-slice images. The colorization improves the visibility of the vascular structures and can help identify the orientation and the location of devices in real-time during MRI guided procedures, such as TIPS, angioplasty, biopsy, stent placement, and electrophysiology applications. The integration of pre-acquired MRA data with real-time guidance has the potential of improving patient safety and procedure efficacy for MRI guided interventional applications.

Acknowledgments: We thank Victor Wright and Kathy Lucas for assistance in experiments.

References: