Measurement of Hyperpolarized 15N-choline using Polarization Transfer with 1H Detection

V. Denisov1,2, A. Comment1,4, P. Vasso3, S. Jannin1, J. van der Klink1, R. Sarkar3, G. Bodenhausen2, H. Hall1, and D. Kirtik1,2

1Department of Experimental Medical Science, Brain Repair and Imaging in Neural Systems, Lund University, Lund, Sweden; 2Lund University Bioimaging Center, Lund University, Lund, Sweden; 3Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; 4Laboratory for Physics of Nanostructured Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Introduction:
Choline ((CH$_3$)$_2$N’CH$_2$OH) is an essential nutrient and an important precursor of acetylcholine, betaine and phosphatidylcholine. Since choline phospholipid metabolism is altered in a variety of cancers, levels of choline-containing compounds represent an important biomarker in oncological diseases. The metabolic conversion of 15N-choline to phosphocholine has recently been visualized in vivo using hyperpolarized 15N MRS [1]. The 15N spin-lattice relaxation time in aqueous choline solution was reported to be as long as 285 s [1], suggesting 15N-choline as a useful probe for liquid-state DNP MRS [2]. However, the small 15N chemical shift difference between choline and its metabolites (ca. 0.2 ppm), combined with the small magnetogyric ratio of 15N (10 times smaller than for proton) can hinder the use of direct 15N MRS detection for in vivo imaging of choline metabolism. In the present work we investigated possibility of the transfer of 15N-choline hyperpolarization from nitrogen to neighbouring protons with subsequent 1H MRS detection.

Methods:
The 15N and 1H spectra were recorded at 7 T on a Bruker 300 WB spectrometer using a 5 mm inverse broadband probe. 15N-choline chloride and TEMPO radical were dissolved in a glycerol-d$_2$/D$_2$O mixture at concentrations of 6 M and 50 mM, respectively. The sample was polarized for ca. 3 hrs at 3.35 T and 1.2 K using a prepolarizer described in [3], and rapidly dissolved into 5 ml of D$_2$O to the final 15N-choline concentration of ca 50 mM. Two 5 mm tubes were filled with 800 μl of the solution and placed in the magnet within ca 30 and 100 s after dissolution, respectively. For each sample, the 15N signal was recorded using a single 10° pulse. This experiment indicated the DNP enhancement factors of up to 5000, compared to the thermal equilibrium state. Thereafter, a single 1H scan was performed using the inverse INEPT sequence [4] that encodes exclusively the 15N -> 1H transfer pathway using two gradients in a 10:1 ratio. The proton signals that do not originate from nitrogen magnetisation (including the water signal) are suppressed.

Results and Discussion:
Although the choline nitrogen lacks directly attached protons, its 15N peak exhibits small splittings due to two-bond J-couplings to the methylene and methyl protons, respectively. Thanks to the narrow homogeneous linewidth of the 15N peak, these couplings can be used for 15N-to-1H polarization transfer. Figures 1 & 2 show the 1H spectra of hyperpolarized 15N-choline solution observed using inverse INEPT. In Figure 1, the primary methylene anti-phase peak (4.07 ppm) was more than 2000 times larger compared to the thermal-equilibrium spectrum, whereas the second-methylene (3.52 ppm) and the residual water (4.79 ppm) peaks were similar in size to the 13C satellites of the primary methylene peak. The relative efficiency of polarization transfer to the methylene (4.07 ppm) and methyl (3.2 ppm) protons depended strongly on the value of the inter-pulse delay (unequal for Figures 1 and 2).

The results indicate that the polarization transfer methods can be used to utilize the long relaxation time of 15N-choline to phosphocholine has recently been visualized in vivo using hyperpolarized 15N MRS [1]. The 15N spin-lattice relaxation time in aqueous choline solution was reported to be as long as 285 s [1], suggesting 15N-choline as a useful probe for liquid-state DNP MRS [2]. However, the small 15N chemical shift difference between choline and its metabolites (ca. 0.2 ppm), combined with the small magnetogyric ratio of 15N (10 times smaller than for proton) can hinder the use of direct 15N MRS detection for in vivo imaging of choline metabolism. In the present work we investigated possibility of the transfer of 15N-choline hyperpolarization from nitrogen to neighbouring protons with subsequent 1H MRS detection.

Although the choline nitrogen lacks directly attached protons, its 15N peak exhibits small splittings due to two-bond J-couplings to the methylene and methyl protons, respectively. Thanks to the narrow homogeneous linewidth of the 15N peak, these couplings can be used for 15N-to-1H polarization transfer. Figures 1 & 2 show the 1H spectra of hyperpolarized 15N-choline solution observed using inverse INEPT. In Figure 1, the primary methylene anti-phase peak (4.07 ppm) was more than 2000 times larger compared to the thermal-equilibrium spectrum, whereas the second-methylene (3.52 ppm) and the residual water (4.79 ppm) peaks were similar in size to the 13C satellites of the primary methylene peak. The relative efficiency of polarization transfer to the methylene (4.07 ppm) and methyl (3.2 ppm) protons depended strongly on the value of the inter-pulse delay (unequal for Figures 1 and 2).

The results indicate that the polarization transfer methods can be used to utilize the long relaxation time of 15N-choline for the storage of nuclear hyperpolarization (thus allowing more time for the sample delivery, biodistribution and metabolic conversion), and subsequently obtain an improved spectral resolution of metabolites together with superior sensitivity, provided by the 1H detection.

References:

Acknowledgements: The work was supported by the Swedish Foundation for Strategic Research.

Figure 1. Top: The 1H spectrum resulting from the non-refocused INEPT pulse sequence, applied ca 35 s after dissolution of the hyperpolarized 15N-choline sample. Bottom: a thermal-equilibrium scan using the same sequence (magnified).

Figure 2. The 1H spectrum resulting from the refocused INEPT pulse sequence, applied ca 110 s after dissolution of the hyperpolarized 15N-choline sample.