Measuring glutamate metabolism in vivo in tumors using Dynamic Nuclear Polarization

F. A. Gallagher1,2, M. I. Kettunen2,3, D-E. Hu2,3, S. E. Day2,3, M. Karlsson4, A. Gisselsson4, M. H. Lerche4, and K. M. Brindle1,2

1Radiology, University of Cambridge, Cambridge, United Kingdom, 2CRUK Cambridge Research Institute, Cambridge, United Kingdom, Biochemistry, University of Cambridge, Cambridge, United Kingdom, 4Imagnia AB, Malmö, Sweden

Introduction
Dynamic Nuclear Polarisation (DNP) has recently been shown to increase the sensitivity of 13C magnetic resonance spectroscopy (MRS) by several orders of magnitude [1]. The number of metabolites that can be hyperpolarized using this technique is increasing; here we show that [1-13C]glutamic acid can also be polarized using DNP. The metabolism of hyperpolarized glutamate to α-ketoglutarate, catalyzed by the enzyme alanine transaminase (ALT), was detected in vitro and in vivo in tumor models. As non-polarized α-ketoglutarate is below the threshold for MRS detection, this presents a new method for probing tumor metabolism.

Methods
[1-13C]glutamic acid was hyperpolarized in a prototype polarizer (GE Healthcare) using a method similar to that previously reported for other metabolites [1]; the final concentration of glutamate was 18 mM. Human hepatoma cells (~10⁷; HepG2) were grown on microcarrier beads as described previously [2] and for some experiments these were incubated with 20 mM sodium pyruvate prior to the experiment. The hyperpolarized glutamate (2 mls) was added to an NMR tube containing 2 mls of cell suspension. 13C spectra were acquired with proton-decoupling, 1 s repetition time, and 4 transients per spectrum. For the in vivo experiments, murine lymphoma EL4 cells were implanted subcutaneously 10 days prior to the experiment. A 1 cm surface coil was placed over the tumor and 0.2 ml of hyperpolarized glutamate was co-injected with 75 mM of non-polarized sodium pyruvate. A pulse-acquire sequence with a nominal flip angle of 30° was used and spectra were acquired every 2 s. Measurements were made at 9.4 T.

Results
[1-13C]glutamic acid was polarized to 28% in the liquid state which represents a 35,000-fold increase above thermal polarization at 37ºC and 9.4 T. When injected into HepG2 cells, the production of α-ketoglutarate was demonstrated. The production of this metabolite was enhanced by the addition of unlabeled (and non-hyperpolarized) sodium pyruvate (Fig. 1). α-ketoglutarate was also demonstrated in vivo following the intravenous injection of hyperpolarized glutamate and non-hyperpolarized sodium pyruvate (Fig. 2).

Discussion
The results demonstrate that the metabolism of glutamate to α-ketoglutarate can be measured using DNP. The enhancement demonstrated with the addition of unlabeled (and non-hyperpolarized) pyruvate confirms that the reaction is an exchange reaction catalyzed by the enzyme ALT. α-ketoglutarate cannot normally be measured using MRS and therefore this presents a new method for probing the citric acid cycle in tumors. Glutamate is the major excitatory neurotransmitter and abnormalities in glutamate neurotransmission are associated with a number of neurological disorders; however, it is not clear whether transport across the blood-brain barrier is sufficiently rapid for detection within the brain. Glutamate is central to cellular metabolism, is a significant nitrogen source, and is involved in nitrogen transport within the body; therefore the ability to measure glutamate and its metabolites could have wide-ranging applications in medical imaging.

Figure 1. Series of in vitro 13C spectra acquired over 100 s following the injection of hyperpolarized glutamate into a tube containing HepG2 cells. The truncated peak at 175.1 ppm is the injected hyperpolarized [1-13C]glutamate and the peak at 181.8 ppm is from the natural abundance [5-13C]glutamate. The peak at 170.7 ppm is from α-ketoglutarate.

Figure 2. Single in vivo spectrum acquired using a 13C-tuned surface coil placed over a murine lymphoma tumor following injection of hyperpolarized glutamate and non-polarized pyruvate. The signal from α-ketoglutarate was observed at ~170.7 ppm.

Acknowledgments
GE Healthcare is gratefully acknowledged for the loan of the hyperpolarizer and research support.

References
1. Ardenkjær-Larsen JH et al. (2003), PNAS 100:10158.