Non-invasive Detection of Cell Death in MCF-7 Breast Cancer Cells by Hyperpolarized 13C MRS

T. H. Witney1,2, R. Napolitano1,3, M. I. Kettunen1,2, F. A. Gallagher4,5, and K. M. Brindle1,2

1Dept. of Biochemistry, University of Cambridge, Cambridge, United Kingdom, 2Cancer Research UK Cambridge Research Institute, Cambridge, United Kingdom, 3Dept. of Chemistry I.F.M, University of Turin, Italy, 4Dept. of Radiology, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom

Objective: Tumor response to therapy is assessed primarily in the clinic by monitoring reductions in tumor size. However, this approach lacks sensitivity since in many cases several weeks may elapse before there is evidence of tumor shrinkage. There is therefore a pressing need to develop non-invasive imaging techniques for monitoring tumor treatment response in the clinic. It has been shown recently that the uptake and metabolism of hyperpolarized $[1^{13}$C]pyruvate can be used to detect response to therapy using 13C magnetic resonance spectroscopy (MRS) and spectroscopic imaging in murine models of lymphoma and prostate cancer [1,2]. The aim of the present study was to determine whether hyperpolarized 13C MRS could be used to detect response to therapy in another, more drug resistant tumor cell line.

Methods: MCF-7 human breast cancer cells were treated with either 100 µM etoposide (etop) or 1 µM staurosporine (STS) to induce cell death. The effect of serum starvation (1% fetal calf serum for 42 h), with and without etoposide, was also evaluated. Following treatment, hyperpolarized $[1^{13}$C]pyruvate - $[1^{13}$C]lactate exchange was assessed over a range of different treatment times: 75 mM hyperpolarized $[1^{13}$C]pyruvate [1] and 75 mM unlabeled lactate were added to a suspension of 2-6x106 MCF-7 cells in a 10 mm NMR tube, maintained at 37°C. 13C spectra were acquired at 1 s intervals for 400 s using a low flip angle pulse in a 9.4 T vertical wide-bore magnet (Oxford Instruments). $[1^{13}$C]pyruvate and $[1^{13}$C]lactate peak intensities were adjusted for both polarization levels and cell number. Apoptosis and necrosis were assessed by microscopy using Hoesch 333258, YO-PRO-1 and propidium iodide (PI) stains. Hoesch 333258 is a UV-excitable, cell permeable dye that enables the quantitation of the total number of cells. The impermeant DNA-binding dye, YO-PRO-1, stains the nucleus of apoptotic and necrotic cells, whereas PI identifies the necrotic population only.

Results and Discussion: Addition of 75 mM hyperpolarized $[1^{13}$C]pyruvate to a suspension of untreated MCF-7 cells resulted in detectable exchange of label with added lactate, in the reaction catalyzed by lactate dehydrogenase (LDH). There was no detectable cell death, nor change in LDH-catalyzed flux between pyruvate and lactate following treatment of cells with the DNA-damaging agent, etoposide, in comparison to untreated control cells. Serum starvation of cells 18h prior to the addition of etoposide however resulted in ~60% apoptosis and a 50% decrease in pyruvate – lactate exchange (Fig. 1). Treatment of cells with the protein kinase inhibitor, staurosporine (STS) for 4h resulted in 80-90% apoptosis and a 50% decrease in pyruvate – lactate exchange following STS treatment in comparison to untreated cells. Induction of low levels of apoptosis by 2 h resulted in a small decrease in pyruvate – lactate exchange (Fig. 1). Treatment of cells with the protein kinase inhibitor, staurosporine (STS) for 4h resulted in 80-90% apoptosis and a 50% decrease in pyruvate – lactate exchange (Fig. 1). Induction of low levels of apoptosis by 2 h resulted in a small decrease in pyruvate – lactate exchange following STS treatment in comparison to untreated cells. Induction of low levels of apoptosis by 2 h resulted in a small decrease in pyruvate – lactate exchange following STS treatment in comparison to untreated cells. Induction of low levels of apoptosis by 2 h resulted in a small decrease in pyruvate – lactate exchange following STS treatment in comparison to untreated cells. Induction of low levels of apoptosis by 2 h resulted in a small decrease in pyruvate – lactate exchange following STS treatment in comparison to untreated cells.

Fig 1. Effect of etoposide treatment on hyperpolarized pyruvate – lactate exchange in MCF-7 cells. 13C signal intensity from $[1^{13}$C]lactate was measured as a function of time following addition of hyperpolarized $[1^{13}$C]pyruvate to a suspension of MCF-7 cells treated with etoposide for 24 h with and without serum fasting.

Fig 2. Detection of cell death in MCF-7 cells following STS treatment. Levels of apoptosis and necrosis detected by microscopy using YO-PRO-1 and PI stains respectively.

(A) Measurements of pyruvate – lactate exchange following STS treatment. 13C signal intensity from $[1^{13}$C]lactate was measured following addition of 75mM hyperpolarized $[1^{13}$C]pyruvate to a suspension of STS-treated MCF-7 cells.
