Cyclooxygenase-2 Silencing of MDA-MB-231 Breast Cancer Cells Reduces Invasion and Alters Metabolism

T. Shah, I. Stasinopoulos, F. Wildes, and Z. M. Bhujwalla

1JHU ICMIC Program, Russel H. Morgan Department of Radiogy and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States

Introduction: COX-2 is a cytoplasmic enzyme responsible for the conversion of arachidonic acid to active lipid mediators whose expression is induced by pro-inflammatory cytokines such as IL-1β. COX-2 is upregulated in different cancers such as colon, prostate, and breast. We have previously demonstrated that silencing COX-2, using stably expressed COX-2-specific short hairpin RNA, in the poorly differentiated and highly metastatic human breast cancer cell line MDA-MB-231 delayed tumor formation and inhibited extrapolated metastasis in an experimental model of metastasis (1).

Material and Methods: We have dynamically tracked invasion and metabolism of COX-2-silenced MDA-MB-231 cells using an MR compatible cell perfusion assay, the Metabolic Boyden Chamber (MBC). Parental MDA-MB-231 cells, Clone 2 cells (COX-2-silenced cells from a single clone), and cells pooled (Pooled) from four individual clones were selected for these studies.

MR-compatible Cell Invasion Assay: For the MR cell perfusion system studies, cells were seeded on Biosilon beads (Nunc, Denmark) beads at a cell density of 1.5 X10⁶ cells per 0.5 ml of microcarriers three days before the experiments in non–cell culture petri dishes, and grown adherently to beads to approximately 70% confluence. The sample consisted of three layers containing filter material, cell covered beads, a home-built chamber filled with the extracellular matrix (ECM), Matrigel® , and perfluorocarbon-doped alginate beads to monitor oxygenation, as previously described (2).

Results & Discussion: Figure 1a shows representative ¹H MR images of ECM gel degradation acquired over 48 h that demonstrate significant degradation of ECM gel by MDA-MB-231 cells. In contrast, Pooled and Clone 2 COX-2-silenced cells showed reduced degradation of ECM relative to parental cells. For statistical analysis data from Pooled (n=2) and Clone 2 cells (n=2) were pooled together. Quantitative time-dependent invasion indices I(t) obtained from diffusion weighted ¹H profiles of intracellular water profiles demonstrated significantly reduced invasion by COX-2-silenced cells (p < 0.03) compared to parental cells (Figure 1b).

Quantitative PCR showed reduced expression of VEGF-A and undetectable levels of uPAR2 and MMP2, genes involved in invasion, in COX-2-silenced cells compared to parental cells (Figure 1c). Reduced total choline (tCho), phosphocholine (PC) levels and lactate (Lac) were detected in ¹H MR spectra of COX-2-silenced cells relative to parental MDA-MB-231 cells. Figure 2 shows quantitative data summarized from ¹H MR spectra of COX-2-silenced cells and MDA-MB-231 parental cells over the course of two days. Levels of tCho (p < 0.03), PC (p < 0.03) and Lac (p < 0.06) in COX-2-silenced cells were significantly lower than parental cells at the time points studied (Figure 2 a-c). We also determined the choline kinase (Chk) expression through immunoblotting and found a lower expression of Chk in COX-2-silenced cells compared to COX-2 expressing parental cells (data not shown).

Conclusion: COX-2-silenced MDA-MB-231 breast cancer cells were significantly less invasive and acquired distinctive metabolic characteristics typical of less aggressive breast cancer cells. These data support the use of COX-2 inhibitors in reducing or preventing breast cancer metastasis.


Acknowledgments: This work was supported by RO1CA82337 & P50CA103175. We thank Dr Dmitri Artemov for valuable assistance with sequence development, Dr Ellen Ackerstaff for guidance with MR assay, and Dr Dikoma Shungu for the processing software.

Figure 1: (a) Representative T₁-weighted ¹H MR images showing degradation of ECM gel by parental MDA-MB-231 cells and reduced degradation of ECM gel by COX-2-silenced Pooled and Clone 2 cells. (b) Quantitative time-dependent invasion indices I(t) were obtained from intracellular diffusion-weighted water profiles at various time points. Values are mean ± SD (n = 4; * p < 0.03). (c) qPCR of differences in expression of invasion related genes (n=3).

Figure 2: Quantification of ¹H and ³¹P MR spectra identified significant differences in the amounts of tCho (a) PC (b) and Lac (c) between COX-2-silenced and COX-2 containing cells. Values are means ± SD (n = 4; * p < 0.03 for tCho, < 0.03 for PC and p < 0.06 for Lac). The data presented here demonstrate that COX-2-silenced MDA-MB-231 cells acquired a significantly reduced ability to degrade and invade the ECM Matrigel® relative to parental cells. Reduced invasion by COX-2-silenced cells can be attributed to reduced expression of genes involved in invasion such as MMP-2, VEGF-A, and uPAR. The reduction of Chk activity and total choline in COX-2-silenced cells is consistent with previous observations that a reduction in choline kinase activity is observed in less malignant cells (3).