The microvascular characteristics of cervical cancer: Limitations of the modified-Tofts tracer kinetic model for the analysis of DCE-MRI data

S. B. Donaldson, C. M. West, S. E. Davidson, B. M. Carrington, G. Hutchison, S. P. Sourbron, and D. L. Buckley

1North Western Medical Physics, Christie Hospital NHS Foundation Trust, Manchester, United Kingdom, 2Imaging Science and Biomedical Engineering, University of Manchester, Manchester, United Kingdom, 3Academic Department of Radiation Oncology, University of Manchester, Manchester, United Kingdom, 4Department of Clinical Oncology, Christie Hospital NHS Foundation Trust, Manchester, United Kingdom, 5Department of Radiology, Christie Hospital NHS Foundation Trust, Manchester, United Kingdom, 6Josef Lissner Laboratory for Biomedical Imaging, Ludwig-Maximilian-University, Munich, Germany

1. Purpose/Introduction
The modified-Tofts tracer kinetic model (standard Tofts + plasma volume, v_p) is often used to analyse DCE-MRI data. It represents a particular case of the general 2-compartment exchange model (2CXM) with two simplifying assumptions: a) negligible plasma mean transit time (MTT) and b) plasma flow, F_p, much greater than microvascular permeability-surface area, PS (F_p >> PS). The 2CXM provides separate estimates of PS and F_p, while the mod.-Tofts model only provides an estimate of the transfer constant, K^trans. K^trans reflects PS if the simplifying assumptions are met but may also be sensitive to F_p if they're not. The aim of this work was to compare the 2 models in patients with carcinoma of the cervix and to assess whether the assumptions made in the mod.-Tofts model are valid in this cervix tumour dataset.

2. Subjects and Methods
Twenty-seven patients with cervical cancer (stages IIB – IVA) were scanned prior to external-beam radiotherapy. MRI studies were performed on a 1.5 T Siemens Magnetom Avanto using a phased-array pelvic coil. A sagittal 3D T1-w VIBE sequence (TR/TE 5.6/1.1 ms, 96 x 128 x 16 matrix, 240 x 320 x 80 mm FOV, acquisition time 3 s) was used for pre-contrast T1 estimation (α = 5°, 10°, 35°) and the dynamic acquisition (α = 25°). Individual arterial input functions (AIFs) were obtained from the descending aorta. Whole tumour ROIs were defined and concentration-time curves were analysed using: a) mod.-Tofts model to obtain estimates of K^trans, v_p, interstitial volume, v_e and bolus arrival time, t_b; b) 2CXM model to obtain estimates of F_p, PS, v_p, v_e & t_b. A paired t-test was used to compare equivalent parameters obtained with the two models.

3. Results
The 2CXM provided excellent fits to all datasets while fits using the mod.-Tofts model were significantly poorer (e.g. Fig. 1). The table shows parameter estimates obtained using both models averaged over all 27 patients. The results of paired t-tests are shown. K^trans correlated poorly (fig. 2) with PS (r = 0.36, p < 0.01) but correlated strongly with F_p (r = 0.95, p < 0.01).

![Fig. 1: Whole tumour concentration-time curve (circles) with fits using mod.-Tofts (gray) and 2CXM (black) along with patient-specific AIF (inset).](image1)

![Fig. 2: Scatterplot showing correlation of K^trans with F_p and PS for all 27 patients. Lines of best fit are also shown.](image2)

<table>
<thead>
<tr>
<th>Model</th>
<th>F_p (ml/ml/min)</th>
<th>K^trans (ml/min)</th>
<th>PS (ml/ml/min)</th>
<th>v_p</th>
<th>v_e</th>
<th>t_b (s)</th>
<th>Chisq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mod.-Tofts</td>
<td>-</td>
<td>0.31 ± 0.23</td>
<td>-</td>
<td>0.03 ± 0.02</td>
<td>0.34 ± 0.17</td>
<td>5.5 ± 1.5</td>
<td>2.7 ± 1.1</td>
</tr>
<tr>
<td>2CXM</td>
<td>0.56 ± 0.42</td>
<td>-</td>
<td>0.14 ± 0.08</td>
<td>0.20 ± 0.13</td>
<td>0.20 ± 0.11</td>
<td>3.7 ± 1.3</td>
<td>1.5 ± 0.9</td>
</tr>
<tr>
<td>P-value</td>
<td>-</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01*</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Values obtained with 2 models averaged over 27 patients. Where comparable, the result of a paired t-test on the 2 groups is shown. Blank cells - parameter not estimated with this model. * - compared using the F-test.

4. Discussion/Conclusion
Our estimates of F_p and PS compare well with those of Haider et al. who used DCE-CT to assess cervical cancer, and demonstrate the highly vascular nature of cervical tumours. The 2CXM provided a better fit than mod.-Tofts in all patients and significantly different estimates were obtained for all comparable parameters. K^trans did not reflect 2CXM estimates of PS or F_p despite correlating well with F_p. Average plasma MTT was 19 s suggesting that the assumption of negligible MTT made in the mod.-Tofts model is not valid in this dataset. Taken together, these results suggest that the 2CXM is more suitable for the analysis of this DCE-MRI dataset than the mod.-Tofts model.

References: