Reproducibility and Volume-dependency of Regional Measurements of Lung Ventilation by Hyperpolarized 3He MRI

K. Emami1, S. Kadlecek1, J. MacDuffie-Woodburn1, J. Zhu2, S. Pickup1, J. Yu1, M. Stetz1, M. Ishii1, M. Stephen1, and R. Rizi1

1Radiology, University of Pennsylvania, Philadelphia, PA, United States, 2Division of Thoracic Surgery, University of Pennsylvania, Philadelphia, PA, United States, 3Department of Otolaryngology at Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, United States, 4Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania, Philadelphia, PA, United States

INTRODUCTION: Pulmonary ventilation is an important marker in lung physiology and is sensitive to many obstructive and restrictive pulmonary diseases. Conventional techniques for measuring regional ventilation are based on delivery/clearance rates of radioactive gases, as well as xenon-contrast X-ray CT. Hyperpolarized 3He MRI has emerged as a novel technique with unique capabilities for visualization of ventilated airspaces noninvasively. In this work we assess the reproducibility of measurements and their dependency on the administered volume using a serial ventilation sequence developed earlier [1].

METHODS: The animal experiment was conducted using a healthy male Sprague-Dawley rat (350 g body weight) in accordance with protocols approved by IACUC of the University of Pennsylvania. The rat was sedated with a 0.1 g/kg IP ketamine and 10 mg/kg xylazine, repeated every 90 min and was intubated with a 2.0-long, 14G angiocatheter modified with a sealant enabling a breath-hold of up to 25 cm H2O for 5 seconds with negligible leakage. Spontaneous respiration was temporarily suppressed using 1 mg/kg IV of pancuronium bromide while connected to the mechanical ventilator. Ventilation was maintained at Vt = 1 ml/100g body weight @ 60 BPM. The animal was placed supine in the coil. Heart rate and blood oxygen saturation level were continuously monitored and temperature was maintained at 37°C using a flow of warm air. Imaging was performed on a 30-cm 4.7-T MRI scanner equipped with 12-cm 25 G/cm gradients and a quadrature 8-leg birdcage body coil (152.95 MHz, ID=7cm) using a GEMS imaging pulse sequence with FOV=6x6cm2, ST=4mm, a=4–5°, MS=64x64 pixels, TR=6.6 ms and TE=3.3 ms. The trachea was included in the selected middle slice. Fractional ventilation, rA, was measured according to the serial ventilation sequence technique [1] using N=10 HP 3He breaths. The concentration of the administered HP gas was controlled with the ventilator at 3He:O2 = 4:1. Regional distribution of flip angle, , was estimated in the imaged body by acquiring a series a back-to-back images with identical imaging parameters to ventilation imaging sequence with no interscan time delay and during a single breath-hold. This calculation is based on the assumption that RF-induced depolarization is the dominant decay mechanism for HP 3He in the time scale of image acquisition, compared to oxygen-induced decay or other in vivo T1 relaxation. The intrasubject reproducibility of fractional ventilation measurement was assessed by calculating intravoxel variation of the calculated rA value across three consecutive measurements. The mean coefficient of variation of rA, CoV(rA) was then reported as a measure of reproducibility over the entire lung. Pairwise comparison between results obtained under different conditions (e.g. with two different ventilation sequences and with identical tidal volumes) was performed using a voxel-by-voxel linear regression analysis between the two fractional ventilation maps and by calculating the corresponding regression coefficient.

RESULTS: Reproducibility of measurements were assessed by repeating the measurement three times using Vt = 3 ml in one imaging session. Figure 1.b shows the voxel-by-voxel coefficient of variation the measured rA value as a percentage, CoV(rA)=σ(rA)/|μ(rA)|, for the i-th voxel across the three measurements. The average CoV(rA) in this healthy rat was measured as 8.9±8.0%. In addition the pairwise spatial correlation of each two sets of measurements was evaluated. Also shown is the voxel-by-voxel correlation assessment of the first and second rA measurements in the rat lung with a relatively linear regression coefficient of R2 = 0.94. As it is evident from the scatter plot, the dispersion of datapoints become larger for higher rA values. Fractional ventilation measurements were also performed on the same rat using four different tidal volumes, Vt = 2, 3, 4 and 5 ml. As anticipated, a larger tidal volume yields a distribution of regional fractional ventilation with an elevated mean rA value. Figure 1.a shows, for each tidal volume, an example MR image of the rat lung along with the corresponding fractional ventilation map and the frequency distribution histogram. The overall enlargement of lung is apparent in the MR images. For comparing rA mean and standard deviation values in each measurement, voxels with a near unity rA value (corresponding to conductive airways) were excluded from the distribution. Calculated values at the four Vt (2, 3, 4 and 5 ml) were as follows: 0.42±0.21, 0.49±0.16, 0.63±0.16, and 0.69±0.15, respectively. Histograms also move to the right with increasing tidal volumes. Fractional ventilation in regions closer to major bronchi increase to a larger degree with increased tidal volume, compared to distal regional of lung parenchyma.

DISCUSSION:

The repeatability of in vivo measurements was assessed in a healthy rat lung and voxel-by-voxel variation was measured at less than 10%. In addition results were shown to tightly correlate (R2 = 0.94) across different measurements. This level of precision is strongly dependent on maintenance of a reproducible tidal volume as controlled by the mechanical ventilator. It is clear from the figure, any misestimation of Vt can have a drastic effect on the measured rA value. This observation highlights the importance of normalizing and accurate titration of tidal volume, especially when using this measurement technique for intersubject comparison.