Comparision of discography opening pressure to T_{1p} relaxation in the inter-vertebral disc in vivo

M. Fenty1, W. R. Witschey 2nd1,2, H. Mohammad1, P. Maurer1, R. Reddy1, D. Elliott4, and A. Borthakur1

1Radiology, University of Pennsylvania, Philadelphia, Pa, United States, 2Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Pa, United States, 3Booth, Bartolozzi, Balderson - 3B Orthopaedics, P.C., Philadelphia, Pa, United States, 4McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pa, United States

Background:
Lower back pain (LBP) is the second most frequent reason for a physician visit, permanently disables more than 5 million Americans and the annual costs are near $100 billion in the U.S. [1-4]. Conventional T_1 and T_2 MR imaging techniques are useful for observing late structural morphological changes to the intervertebral discs (IVDs) but are insensitive to early biochemical changes. These late structural changes are often clinically identified as late-stage degenerative disc disease [5]. However, early degeneration occurs within the nucleus pulposus (NP) in the IVD as large aggregating proteoglycans break down [6]. T_{1p} MRI has the ability to detect these early biochemical changes within the IVD and studies have shown a correlation between disc degenerative grade using the qualitative Pfirrman scale and T_{1p} MRI [7-9]. The purpose of our study is to determine the relationship between T_{1p} and disc opening pressure acquired via invasive provocative discography.

Materials and Methods:
All experiments were performed with approval from the Institutional Review Board. MRI was performed on a Siemens clinical scanner with the vendor-supplied transmit/receive 8-channel spine array coil using a 3D T_{1p} pulse sequence [10]. Imaging parameters: TE/TR/alpha = 3 ms/6ms/20°, acquisition matrix = 256x128x16, interpolated to 256x256x16, slab thickness = 80mm, in-plane resolution = 0.8x0.8 mm2, T_1, Recovery Delay = 2 s, BW = 130Hz/pixel, centric k-space encoding, pulse train = 128.
Five T_{1p}-weighted images were obtained (spin-lock duration 5,10,20,30,40 ms) to generate T_{1p} relaxation maps. Images were fitted on a pixel by pixel analysis to the T_{1p} exponentially decaying function. Mean disc and nucleus pulposus T_{1p} relaxation rates were calculated using ROI analysis from maps generated from imaging the entire disc volume. Thirteen individuals were scanned using our T_{1p} imaging procedure and clinical T_{1p}-weighted images for Pfirrman grading. Five of these individuals had provocative discography performed and opening pressure values were obtained.

Results:
Figure 1 shows correlation between mean T_{1p} values of the entire disc with opening pressure measurements from discography. Five individuals underwent discography where opening pressure values were recorded. Figure 2 confirms T_{1p} values correlation with Pfirrman grade. Thirteen individuals were scanned to provide a large data set allow us to confirm previous findings that T_{1p} values are linearly correlated with Pfirrman grade. Figure 3 shows representative subjects with T_{1p} relaxation maps overlaid on an anatomical proton density image. Notice the large variation of the disc volume for the healthy individual (left) as compared to a homogeneous T_{1p} distribution with severely degenerated discs (right).

Conclusions:
While preliminary, a moderate correlation has shown to exist between discography opening pressure and T_{1p} relaxation values. Initial results are promising in describing a relationship between in vivo MRI imaging and surgically invasive spine discography opening pressure. Correlation is higher between mean total disc T_{1p} values as compared to NP values. While the variation of T_{1p} values in respective ROIs vary substantially, it is shown that the mean standard deviation of all ROIs obtained decreases as you increase the homogeneity of the disc, corresponding to a higher Pfirrman grade.

References:
2. Deyo RA. et al. Spine 2004
4. Andersson GB. Lancet 1999