Localized Measurement of Atherosclerotic Plaque Inflammatory Burden with Dynamic Contrast-Enhanced MRI

H. Chen1, J. Cai2, X. Zhao3, T. S. Hatsukenami4, C. Yuan5, and W. S. Kerwin6

1Department of Radiology, University of Washington, Seattle, Washington, United States, 2Department of Radiology, PLA General Hospital, Beijing, China, People's Republic of, 3Department of Surgery, University of Washington, Seattle, Washington, United States

Introduction:
Inflammation is important in both the pathogenesis and outcome of atherosclerosis [1]. Recently, dynamic contrast-enhanced (DCE-MRI) has been shown to be sensitive to inflammatory content within plaque [2]. Similar to 18F-Fluorodeoxyglucose Positron Emission Tomography (FDG-PET), which shows increased glucose metabolism associated with macrophages [3], DCE-MRI is thought to highlight the increased vascular supply and permeability that supports macrophage metabolism. Unlike PET, however, DCE-MRI provides relatively high spatial resolution, which may allow DCE-MRI to generate measurements of inflammatory burden localized to key regions within the plaque. In this study, we sought to demonstrate the ability of DCE-MRI to provide localized measurements by comparing the transfer constant (Ktrans) of contrast agent uptake across plaque regions with different composition. We hypothesized that different plaque components would be associated with different values of Ktrans, reflecting the varying vascularities and permeabilities of each region.

Methods and Materials
Population Forty patients (age range: 30-90 years, mean age: 65.3 years) with carotid atherosclerosis of >50% stenosis were evaluated using DCE-MRI. MR Imaging All images were acquired on a 3T scanner (Signa, GE Healthcare). The exam included application of a gadolinium based contrast agent (Omniscan, GE Healthcare, Milwaukee, USA) at a dose of 0.1mmol/kg. Coincident with injections, sequences of 2D spoiled gradient recalled echo (SPGR) images were obtained with TR=100ms, TE=6.2ms, thickness=2mm, and FOV=14cm, with interleaving. Data were acquired at six locations, centered on the carotid bifurcation, and at 12 time points separated by a repetition interval of 19s. Other contrast weightings (Omniscan, GE Healthcare, Milwaukee, USA) at a dose of 0.1mmol/kg. Coincident with injections, sequences of 2D spoiled gradient

Data analysis For each acquired DCE-MRI slice, the corresponding TOF, T1, CET1, T2 and PD weighted slices were reviewed using CASCADE analysis software [5] to identify the lumen and outer wall boundaries of the carotid artery and necrotic core (NC), calcification (CA), hemorrhage (Hem), and loose matrix (LM) regions within the plaque. Regions within the wall not classified were considered to be fibrous tissue (FIB). Each DCE-MRI slice was then automatically processed to produce a vasa vasorum (V-V) image [6] that shows the fractional plasma volume (Vp) and Ktrans as a color-coded parametric image (Fig. 1). Next, the boundaries of lumen, outer wall and plaque components were mapped to the V-V image by an automatic registration algorithm [6]. The average Ktrans values within each component were then reported.

Results Nine subjects were excluded, either because the standard image weightings were uninterpretable or because the V-V image algorithm failed. In the remaining 31 arteries, the mean Ktrans values for each component are illustrated in Fig. 2. The statistical comparison between any two of the components is summarized in Table 1. The Ktrans values for any pair of components were significantly different.

Conclusion The results of this analysis indicate that DCE-MRI is able to detect differences in Ktrans within plaque regions with different composition. LM is a loosely organized region of fibrous tissue with high water content and permeability that leads to the highest measured Ktrans. In contrast, NC, Hem, and CA are poorly perfused regions with substantially lowered values of Ktrans. These results suggest that Ktrans could be helpful in determining plaque composition. More significantly, localized Ktrans measurements could also be used to assess inflammatory burden in specific regions, such as the plaque shoulders, where inflammation is most likely to lead to plaque disruption.

Table 1. Statistical comparison (Mann-Whitney U test) of Ktrans between any two of the plaque components (P-Value).

<table>
<thead>
<tr>
<th>P-Value</th>
<th>NC</th>
<th>Hem</th>
<th>LM</th>
<th>CA</th>
<th>FIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>1.000</td>
<td><0.001</td>
<td><0.001</td>
<td>0.006</td>
<td><0.001</td>
</tr>
<tr>
<td>Hem</td>
<td><0.001</td>
<td>1.000</td>
<td><0.001</td>
<td>0.045</td>
<td><0.001</td>
</tr>
<tr>
<td>LM</td>
<td><0.001</td>
<td><0.001</td>
<td>1.000</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>CA</td>
<td>0.006</td>
<td>0.045</td>
<td><0.001</td>
<td>1.000</td>
<td><0.001</td>
</tr>
<tr>
<td>FIB</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td>1.000</td>
<td></td>
</tr>
</tbody>
</table>

Reference: