Study of Tricarboxylic Acid Cycle Flux Changes in Human Visual Cortex during Two-hemifield Visual Stimulation with Different Stimulus Frequency using In Vivo 1H-1C MRS and fMRI

F. Du1, M. Marjanska1, X-H. Zhu1, A. Kumar2, E. R. Seaquist2, K. Ugurbil1, and W. Chen1

1Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States, 2General Clinical Research Center, University of Minnesota, Minneapolis, MN, United States

Introduction
The coupling relationships among the stimulus-evoked brain activity, hemodynamic and metabolic responses are critical for understanding the underlying mechanism of fMRI BOLD signal and brain function. They are, nevertheless, highly debated. One particular issue in the fMRI question is whether the increase in CMRO$_2$ during graded brain activation follows BOLD and CBF changes. Previously published PET functional study1 showed that CMRO$_2$ changes were larger at 4 Hz reversal frequency (~18%) than at 8 Hz (~4%) using checkerboard visual stimulus despite the opposite trend for CBF changes (~34% at 4 Hz and ~46% at 8 Hz)2. The present study aimed to re-examine the CMRO$_2$-BOLD coupling relationship between 4 and 8 Hz visual stimuli by simultaneously measuring BOLD and the relative changes of oxidative CMR$_{ox}$ in two hemispheric visual cortical regions, which were stimulated at 4 Hz and 8 Hz, respectively (see example in Figs. 1 and 2).

Materials and Methods
Visual stimuli: To increase the experimental efficiency and improve measurement reliability, the visual stimulation consisted of two hemifield reversal checkerboard visual stimuli: the right hemifield with 4 Hz for activating the left hemispheric visual cortex, and the left hemifield with 8 Hz for activating the right hemispheric visual cortex based on the retinotopic relationship (see Figs. 1 and 2A).

Glucose infusion: Uniformly labeled 1C-enriched D-glucose infusion was conducted according to a well-established infusion protocol for measuring the metabolic turnover rate for labeling glutamate (Glu) from the infused glucose3. The 1C-labeled Glu signal and its changes were measured by the in vivo 1H-1C editing MRS method for gaining detection sensitivity4. The 1H-1C editing MRS data were acquired before (10 mins), during (around 60 mins) and after (20 mins) the glucose infusion in the presence of visual stimulation. All the procedures were approved by the institutional review board of the University of Minnesota.

NMR experiments: All the NMR measurements were conducted at 4T whole body scanner. The same 1H-1C dual surface-coil was used for both fMRI and in vivo 1H-1C MRS measurements, consisting of a 10-cm diameter single loop 1H surface coil and two 15-cm diameter surface coils in quadrature mode for 1C spin inversion and decoupling. A 1-cm diameter sphere containing 1C-formic acid was placed at the center of the 1H coil for calibrating the 1C-radiofrequency power. Anatomical images were acquired by the multi-slice T1-weighted TurboFLASH sequence. The fMRI study using a gradient echo-planar imaging sequence was performed on each subject prior to the 1C measurements. The fMRI maps were used for guiding the voxel position of localized 1H-1C MRS and for partial volume correction for calculating the relative changes of oxidative CMR$_{ox}$ during the visual stimulation. The measurements of 1C-Glu labeling were based on the 1H-1C editing techniques using the LASER1 localized sequence combined with 1C inversion and decoupling. The 1C homogeneity was corrected using NAA signals and it was assumed that there is no significant difference in [NAA] for the two selected voxels symmetrically along the central fissure of brain. All other procedures were similar to the previous study4.

Results and Discussions
Volunteer’s performance is crucial for this study. Therefore, we screened some subjects using fMRI and a typical result was illustrated in Fig. 1, showing extensive evoked brain activities in the visual cortex. The subjects with excellent fMRI performance were recruited for the 1C-glucose infusion studies. Fig. 2A demonstrates the experimental setup for performing two-hemifield visual stimulation with different stimulus frequency (4 Hz versus 8 Hz) and the fMRI BOLD map from one subject. Two in vivo 1H-1C spectra shown in Fig. 2B were simultaneously acquired from the two identically-sized voxels illustrated by the two green boxes in Fig. 2A, which were chosen symmetrically along the central fissure and were based on the fMRI maps. The functional MRS (fMRS) results (Fig. 2B) indicate that the total accumulated 1H-[4-13C]-Glu signal within 50 minutes of visual stimulation was significantly larger in the right-hemispheric visual cortex with 8 Hz stimulation than that of the left-hemispheric visual cortex with 4 Hz stimulation. The quantitative fMRS results after correcting 1B inhomoogeneity and partial volume effect based on the fMRI mapping results5 are shown in Fig. 2D, and the corresponding BOLD results are summarized in Fig. 2C. These results clearly suggest that both BOLD and oxidative CMR$_{ox}$ (close to CMRO$_2$) changes are larger at 8Hz as compared to 4 Hz. Therefore, they indicate a strong coupling between BOLD and CMRO$_2$ changes in response to the brain stimulation. This conclusion should be true also for the CBF-CMRO$_2$ coupling because of a strong correlation between BOLD and CBF changes, which has been previously shown in the literature2.

Acknowledgements: NIH grants: NS41262-05, EB00513, P41 RR08079, P30NS057091 and NCR R 00400; the W.M. Keck Foundation.