Real-Time Observation of Spatiotemporal Dynamics of Arterial Pulsatility with MR-Encephalography

J. Hennig1, T. Grotz1, B. Zahneisen1, A. Ella1, M. Zaitsev4, I. Mader1, and A. Harloff1

1Dept. of Diagnostic Radiology, Medical Physics, University Hospital Freiburg, Freiburg, Germany, 2Neuroradiology, University Hospital Freiburg, Freiburg, Germany, 3Neurology, University Hospital Freiburg, Freiburg, Germany

Introduction: The concept of one-voxel-one-coil(OVOC) acquisition has been introduced as an extreme realization of parallel imaging where spatial information is predominantly encoded through the sensitive volumes of multiple small coils. In implementations as MR-encephalography(MREG) or Inverse Imaging (InI) this allows very rapid examination of functional activation (1,2). The signal time course of MREG-acquisitions shows strong pulsatility due to breathing and ECG. For fMRI studies these are treated as confounds and removed by suitable physiological noise correction algorithms (3). The purpose of this study was to explore the feasibility of MREG/acquisition to measure the spatiotemporal dynamics of ECG-pulsatility.

Methods: Experiments on 8 volunteers were performed on a 3T Tim Trio (Siemens) using a custom made 8 channel head coil array (MGH, L.L.Wald). Data acquisition was performed using a COBRA-acquisition (TE=10 ms, FA 15 deg) with four projections at TR= 20 ms per projection or 80 ms per image for a total of 140s (4). A single transverse slice was located through the area of the calcerine fissure as in fMRI-studies. Images were reconstructed by constrained reconstruction using Tikhonov regularization as previously described (4). ECG-signals were coregistered with data acquisition in a time-locked manner. For retrospective synchronization trigger signals were identified from the segment of the registered signals (4). The high sensitivity of the methods allows a qualitative assessment during the resampling cycles is set to the length of the shortest ECG-cycle. This is based on the assumption that variations in the pulse period are mainly caused by variations in the end systole whereas the systolic phase remains constant. In constant phase resampling each ECG-interval is stretched to a constant length by nonlinear interpolation.

Results: Fig.1 shows images demonstrating the propagation of the arterial pulse wave at 20 ms time intervals. Fig.2 shows signal timecourses in pixels along a line from the cortex towards the ventricles: It is shown, that the signal maximum is reached first at the cortex with a subsequent inward propagation to white matter with a clear delay of the peak maximum between grey and white matter. No significant asymmetry could be discerned in the observed pulsatility in corresponding areas between the hemispheres. No significant difference was observed in the variance of the resampled signals between constant time and constant phase resampling.

Discussion: The observed apparent spread of arterial pulsatility from the cortex inwards is a consequence of a superposition of three hemodynamic events: First arterial pulsatility is observed in the cortex which is supplied through the leptomeningeal arteries. The central structures are supplied somewhat delayed. A broad hump at the center can be attributed to CSF-pulsatility and/or brain pulsation. The lack of distinction between constant time- and constant phase average is most likely due to the small variation in pulse rate in the cohort of healthy volunteers examined in this study. It should be noted that the measured absolute time within the ECG-cycle is rather meaningless due to the somewhat artificial generation of the trigger signal at the maximum of the measured ECG-signal. The mechanism underlying the observed signal changes is a superposition of various mechanisms as shown by the complex signal-time courses of vascular signals in Fig.2: A signal increase may be attributed to inflow effects in the current single slice experiment. Variations in vessels size especially of downstream venules and veins will increase CBV and thus spin density. Negative contributions arise from slow dependant dephasing and (potentially) from a dynamic BOLD-effect due to a shift between arterial and venous contributions over the ECG-cycle. An exact analysis of the physiological basis of the observed signal changes therefore is highly complex and requires further studies.

Conclusions: Our results indicate, that MREG can be used as a robust and reliable tool to monitor arterial pulsatility. The results shown are generated from periodical averaging over 2 min to allow for quantitative comparison of pulsatility effects. The high sensitivity of the methods allows a qualitative assessment directly on the acquired data in real-time. The method thus can be used as a very fast and sensitive method to add information about the spatiotemporal dynamics of arterial pulsatility. Potential areas of clinical applications are the diagnosis and assessment of territories with pathological flow dynamics in stroke patients, territorial/ hemispheric pulsatility asymmetries in patients with atherosclerotic disease and other pathologies leading to alterations in arterial pulsatility.

References:

Acknowledgements:
This work is part of the INUMAC project supported by the German Federal Ministry of Education and Research, grant 13N9208.