Less severe spinal cord injury in dysmyelinated mice evaluated using DTI and locomotion

T-W. Tu¹, J. H. Kim², and S-K. Song²

¹Mechanical, Aerospace and Structural Engineering, Washington University, St. Louis, MO, United States, ²Radiology, Washington University, St. Louis, MO, United States

Introduction

In contusion spinal cord injury (SCI), the secondary neuron degeneration post mechanical damage plays a crucial role in the progressive spinal cord degeneration. The secondary degenerative processes involve microglial and macrophage infiltration followed by the clearance of myelin debris. However, the myelin debris in SCI has been known to inhibit the axonal growth and regeneration due to the inhibition of axonal regeneration by myelin constituents proteins such as Nogo and MAG. Thus, the lack of myelin sheaths in shiverer mice may provide a more hospitable environment for axonal regrowth after SCI. Diffusion tensor imaging (DTI) has emerged as a sensitive noninvasive diagnostic tool to examine the white matter integrity in vivo. The objective of this study is to evaluate the impact of myelin sheath deficiency on SCI progression with in vivo DTI.

Materials and Methods

Severe contusion SCI were generated in four 10-12 week-old female shiverer mutant MBP^{-/-}/MBP^{+/+} (myelin-deficient) mice and four heterozygous MBP^{-/-}/ (normal myelin sheath) controls littermate, weighting 19-22 g, using previously reported method. On the day before injury, DTI of spinal cord was performed for each mice to acquire the baseline data. After severe contusion SCI at the T9 vertebral level, a sequential DTI were performed on each mouse at the hyper-acute (~3hrs), sub-acute (~7 DPI), and chronic phase (~21 DPI).

In vivo DTI was performed by using a diffusion weighted spin-echo sequence applying diffusion sensitizing gradients in six directions, i.e. (G_x,G_y,G_z) = (1,1,0), (1,0,1), (0,1,1), (-1,0,0), (0,-1,1), (1,0,0). The other acquisition parameters were: TE, 38 ms; Δ, 21 ms; δ, 7 ms; b-value, 0 and 1000 s/mm²; FOV, 1 × 1 cm²; data matrix, 128 × 128 zero-filled to 256×256; number of average, 4.

For both baseline and injured cords, the regions of spared ventral white matter was segmented by threshold of mean±2SD derived from the RA value in the ventral white matter of baseline controls. The region of interest (ROI) depicted the region of spared white matter volume to take into account the effect of atrophy of the injured cords.

Results

The white and gray matter of spinal cord could be clearly differentiated based on the RA maps of shiverer and control mice in the baseline images (Fig. 1). After SCI, the total spinal cord volume decreased progressively from acute phase to 21DPI in both groups (data not shown). However, the normalized volume of spared white matter of shiverer mice was 7% higher than that of control mice at 7DPI, and was 12% higher than that of control mice at 21DPI (Fig. 2A). Correspondingly, shiverer mice showed better hind limb motor function than control mice from 7DPI to 21 DPI (Fig. 2B).

Discussion and Conclusions

The effect of dysmyelination on in vivo DTI parameters as well as the hindlimb locomotion was examined in control and dysmyelinated shiverer mice. The increase of normalized λ_∥ at 21DPI was substantially lower in shiverer mice, suggesting less extent of myelin degeneration post SCI in shiverer mice. λ_∥ not changing over time implied the reach of upper limit of λ_∥ in dysmyelinated shiverer mice. The DTI detected higher volume of spared white matter and the better hindlimb locomotion in shiverer mice suggested that the lack of myelin debris may indeed have a significant impact in axonal regeneration in SCI. Furthermore, the long-term functional outcome depends on both the initial damage and also the extent of secondary injury. Our data suggest that when the initial injury is similar between the two groups, the different degrees of recovery are probably due to the lack of myelin debris for the shiverer mice.

References