Objectives: Evaluate the long-term changes in diffusion tensor imaging (DTI) in multiple sclerosis (MS) patients starting highly effective anti-inflammatory therapy.

Background: DTI is an MRI measure of brain tissue integrity and is an attractive metric for use in clinical trials evaluating neuroprotective agents. Pathology-imaging correlation studies suggest that longitudinal diffusivity (parallel to fiber tracts, λ_\parallel) represents axonal integrity, while transverse diffusivity (across fiber tracts, λ_\perp) represents myelin integrity. Little is known about the responsiveness of DTI metrics to anti-inflammatory MS therapies.

Design/Methods: Nineteen MS patients starting natalizumab were imaged serially for 1 year. Imaging was performed on a 3T Siemens Trio. Diffusion-weighted imaging used 71 non-collinear diffusion-weighting gradients (2.5 x 2.5 x 2.5mm voxels, $b=2000$sec/mm2, 8 $b=0$ acquisitions). Anatomical imaging was performed for lesion detection and co-registration. Gad lesions and 20 normal-appearing white matter tissue (NAWM) regions of interest (ROIs, Figure 1) were outlined on each baseline image set. ROIs were followed using FSL3 and AFNI4 software. Average values within each ROI were derived for fractional anistotropy (FA), mean diffusivity (MD), λ_\parallel, and λ_\perp. Analysis was performed using mixed model regression analysis.

Results: At baseline, eleven of nineteen patients demonstrated a total of 60 (median = 5) gadolinium-enhancing lesions. Over 1 year (Figure 1), FA increased in gad lesions (2.10/month), but decreased in NAWM (-1.01/month; p<0.0001 for both). Changes in FA were driven by decreased λ_\parallel in gad lesions (-1.95 10^{-6} mm2/sec/month, p<0.001; NAWM was n.s.), but decreased λ_\perp in NAWM (-2.13 10^{-6} mm2/sec/month, p<0.0001; gad lesions was n.s.). MD decreased in both gad lesions (-1.11 10^{-6} mm2/sec/month, p=0.03) and NAWM (-0.54 10^{-6} mm2/sec/month p=0.01), but was greater in gad lesions (p=0.003).

Conclusions: The results are consistent with short-term remyelination within acute lesions and long-term axonal degeneration in normal appearing white matter. These results also suggest that DTI may provide pathology-specific insights into MS. 2-year follow-up is underway.

Support: K23NS47211 and NMSS RG3548 to RJF.

Figure 1. (a.-e.) Locations of normal-appearing white matter ROIs. (f.) Example ROIs of enhancing lesions

Figure 2. Changes in DTI measures over 12 months in MS patients starting highly-effective long-term anti-inflammatory therapy (natalizumab).
